Euclidean relationIn mathematics, Euclidean relations are a class of binary relations that formalize "Axiom 1" in Euclid's Elements: "Magnitudes which are equal to the same are equal to each other." A binary relation R on a set X is Euclidean (sometimes called right Euclidean) if it satisfies the following: for every a, b, c in X, if a is related to b and c, then b is related to c.
Serial relationIn set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity.
Transitive relationIn mathematics, a relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Each partial order as well as each equivalence relation needs to be transitive. A homogeneous relation R on the set X is a transitive relation if, for all a, b, c ∈ X, if a R b and b R c, then a R c. Or in terms of first-order logic: where a R b is the infix notation for (a, b) ∈ R. As a non-mathematical example, the relation "is an ancestor of" is transitive.
Partition of a setIn mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.
Partial equivalence relationIn mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation. Formally, a relation on a set is a PER if it holds for all that: if , then (symmetry) if and , then (transitivity) Another more intuitive definition is that on a set is a PER if there is some subset of such that and is an equivalence relation on .
Converse relationIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Glossary of order theoryThis is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles: completeness properties of partial orders distributivity laws of order theory preservation properties of functions between posets. In the following, partial orders will usually just be denoted by their carrier sets.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Quasitransitive relationThe mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem. A binary relation T over a set X is quasitransitive if for all a, b, and c in X the following holds: If the relation is also antisymmetric, T is transitive.
Composition of relationsIn the mathematics of binary relations, the composition of relations is the forming of a new binary relation R; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent.