Summary
In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing. The concept appears in ergodic theory—the study of stochastic processes and measure-preserving dynamical systems. Several different definitions for mixing exist, including strong mixing, weak mixing and topological mixing, with the last not requiring a measure to be defined. Some of the different definitions of mixing can be arranged in a hierarchical order; thus, strong mixing implies weak mixing. Furthermore, weak mixing (and thus also strong mixing) implies ergodicity: that is, every system that is weakly mixing is also ergodic (and so one says that mixing is a "stronger" condition than ergodicity). The mathematical definition of mixing aims to capture the ordinary every-day process of mixing, such as mixing paints, drinks, cooking ingredients, industrial process mixing, smoke in a smoke-filled room, and so on. To provide the mathematical rigor, such descriptions begin with the definition of a measure-preserving dynamical system, written as . The set is understood to be the total space to be filled: the mixing bowl, the smoke-filled room, etc. The measure is understood to define the natural volume of the space and of its subspaces. The collection of subspaces is denoted by , and the size of any given subset is ; the size is its volume. Naively, one could imagine to be the power set of ; this doesn't quite work, as not all subsets of a space have a volume (famously, the Banach-Tarski paradox). Thus, conventionally, consists of the measurable subsets—the subsets that do have a volume. It is always taken to be a Borel set—the collection of subsets that can be constructed by taking intersections, unions and set complements; these can always be taken to be measurable. The time evolution of the system is described by a map . Given some subset , its map will in general be a deformed version of – it is squashed or stretched, folded or cut into pieces.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.