Megathrust earthquakes occur at convergent plate boundaries, where one tectonic plate is forced underneath another. The earthquakes are caused by slip along the thrust fault that forms the contact between the two plates. These interplate earthquakes are the planet's most powerful, with moment magnitudes (Mw) that can exceed 9.0. Since 1900, all earthquakes of magnitude 9.0 or greater have been megathrust earthquakes.
The thrust faults responsible for megathrust earthquakes often lie at the bottom of oceanic trenches; in such cases, the earthquakes can abruptly displace the sea floor over a large area. As a result, megathrust earthquakes often generate tsunamis that are considerably more destructive than the earthquakes themselves. Teletsunamis can cross ocean basins to devastate areas far from the original earthquake.
The term megathrust refers to an extremely large thrust fault, typically formed at the plate interface along a subduction zone, such as the Sunda megathrust. However, the term is also occasionally applied to large thrust faults in continental collision zones, such as the Himalayan megathrust. A megathrust fault can be long.
A thrust fault is a type of reverse fault, in which the rock above the fault is displaced upwards relative to the rock below the fault. This distinguishes reverse faults from normal faults, where the rock above the fault is displaced downwards, or strike-slip faults, where the rock on one side of the fault is displaced horizontally with respect to the other side. Thrust faults are distinguished from other reverse faults because they dip at a relatively shallow angle, typically less than 45°, and show large displacements. In effect, the rocks above the fault have been thrust over the rocks below the fault. Thrust faults are characteristic of areas where the Earth's crust is being compressed by tectonic forces.
Megathrust faults occur where two tectonic plates collide. When one of the plates is composed of oceanic lithosphere, it dives beneath the other plate (called the overriding plate) and sinks into the Earth's mantle as a slab.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Cascadia subduction zone is a 960 km (600 mi) fault at a convergent plate boundary, about 112-160 km (70-100 mi) off the Pacific Shore, that stretches from northern Vancouver Island in Canada to Northern California in the United States. It is capable of producing 9.0+ magnitude earthquakes and tsunamis that could reach 30m (100 ft). The Oregon Department of Emergency Management estimates shaking would last 5-7 minutes along the coast, with strength and intensity decreasing further from the epicenter.
The Aleutian Islands (əˈluːʃən ; Алеутские острова; Unangam Tanangin, "Land of the Aleuts", possibly from Chukchi aliat, "island"), also called the Aleut Islands or Aleutic Islands and known before 1867 as the Catherine Archipelago, are a chain of 14 large volcanic islands and 55 smaller islands. Most of the Aleutian Islands belong to the U.S. state of Alaska, but some belong to the Russian federal subject of Kamchatka Krai.
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Dams are paramount for human development around the world. The course is an introduction to the fascinating domain of dam engineering, from design to construction, for water storage and regulated supp
Rubble stone masonry is a common construction typology of historical city centres and vernacular architecture. While past earthquakes have shown that it is one of the most vulnerable masonry construction typologies, there are few experimental campaigns giv ...
Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...
Masonry aggregates, which emerged as layouts of cities and villages became denser, make up historical centres all over the world. In these aggregates, neighbouring structures may share structural walls that are joined at the interfaces by mortar or interlo ...