Median (geometry)In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect each other at the triangle's centroid. In the case of isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in length. The concept of a median extends to tetrahedra.
Three-dimensional spaceIn geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, the Euclidean n-space of dimension n=3 that models physical space. More general three-dimensional spaces are called 3-manifolds. Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space.
Rotational symmetryRotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres, circles and other spheroids.
AreaArea is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat.
Law of cosinesIn trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and (see Fig. 1), the law of cosines states: The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then and the law of cosines reduces to The law of cosines is useful for solving a triangle when all three sides or two sides and their included angle are given.
CuboidIn geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Thales's theoremIn geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras. There is nothing extant of the writing of Thales.
Right triangleA right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle (ὀρθόσγωνία), is a triangle in which one angle is a right angle (that is, a 90-degree angle), i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry. The side opposite to the right angle is called the hypotenuse (side c in the figure).
ParallelepipedIn geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclidean geometry, the four concepts—parallelepiped and cube in three dimensions, parallelogram and square in two dimensions—are defined, but in the context of a more general affine geometry, in which angles are not differentiated, only parallelograms and parallelepipeds exist.
Point reflectionIn geometry, a point reflection (also called a point inversion or central inversion) is an transformation of affine space in which every point is reflected across a specific fixed point. A point reflection is an involution: applying it twice is the identity transformation. It is equivalent to a homothetic transformation with scale factor −1. The point of inversion is also called homothetic center. An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.