Médiane (géométrie)Dans son sens le plus courant, une médiane désigne, dans un triangle, une droite joignant un des trois sommets du triangle au milieu du côté opposé. Par extension, en géométrie plane, les médianes d'un quadrilatère sont les segments reliant les milieux de deux côtés opposés. Enfin, en géométrie dans l'espace, les médianes d'un tétraèdre sont les droites passant par un sommet du tétraèdre et par l'isobarycentre des trois autres. Dans un triangle ABC, la médiane issue du sommet A est la droite (AI) où I désigne le milieu du segment [BC].
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Aire (géométrie)thumb|L'aire du carré vaut ici 4. En mathématiques, l'aire est une grandeur relative à certaines figures du plan ou des surfaces en géométrie dans l'espace. Le développement de cette notion mathématique est lié à la rationalisation du calcul de grandeur de surfaces agricoles, par des techniques d'arpentage. Cette évaluation assortie d'une unité de mesure est aujourd'hui plutôt appelée superficie. Informellement, l'aire permet d'exprimer un rapport de grandeur d'une figure relativement à une unité, par le biais de découpages et recollements, de déplacements et retournements et de passage à la limite par approximation.
Loi des cosinusEn mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle.
CuboidIn geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Angle inscrit dans un demi-cercleLe théorème de géométrie qui affirme que l'angle inscrit dans un demi-cercle est droit, est appelé Théorème de Thalès en Allemagne (Satz des Thales) à partir de la toute fin du , puis dans plusieurs pays, mais assez rarement en France où, à partir à peu près de la même époque, le « théorème de Thalès » désigne un théorème tout autre, sur la proportionnalité des segments découpés sur deux droites sécantes par des droites parallèles.
Triangle rectangleEn géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l’angle droit, sont appelés cathètes. L’hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
Parallélépipèdevignette|Perspective cavalière d'un parallélépipède. En géométrie dans l'espace, un parallélépipède (ou parallélipipède) est un solide dont les six faces sont des parallélogrammes. Il est au parallélogramme ce que le cube est au carré et ce que le pavé droit est au rectangle. En géométrie affine, où l'on ne tient compte que de la notion de parallélisme, un parallélépipède peut être aussi défini comme un hexaèdre dont les faces sont parallèles deux à deux ; un prisme dont la base est un parallélogramme.
Symétrie centralethumb|upright=0.7|Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière. En géométrie, une symétrie centrale est une transformation d'un espace affine. Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point M' tel que le point Ω soit le milieu du segment [MM']. En termes de vecteurs, cela se traduit par : Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois.