In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system.
The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Perron–Frobenius operator or Ruelle–Perron–Frobenius operator, in reference to the applicability of the Perron–Frobenius theorem to the determination of the eigenvalues of the operator.
The iterated function to be studied is a map for an arbitrary set .
The transfer operator is defined as an operator acting on the space of functions as
where is an auxiliary valuation function. When has a Jacobian determinant , then is usually taken to be .
The above definition of the transfer operator can be shown to be the point-set limit of the measure-theoretic pushforward of g: in essence, the transfer operator is the in the category of measurable spaces. The left-adjoint of the Frobenius–Perron operator is the Koopman operator or composition operator. The general setting is provided by the Borel functional calculus.
As a general rule, the transfer operator can usually be interpreted as a (left-)shift operator acting on a shift space. The most commonly studied shifts are the subshifts of finite type. The adjoint to the transfer operator can likewise usually be interpreted as a right-shift. Particularly well studied right-shifts include the Jacobi operator and the Hessenberg matrix, both of which generate systems of orthogonal polynomials via a right-shift.
Whereas the iteration of a function naturally leads to a study of the orbits of points of X under iteration (the study of point dynamics), the transfer operator defines how (smooth) maps evolve under iteration. Thus, transfer operators typically appear in physics problems, such as quantum chaos and statistical mechanics, where attention is focused on the time evolution of smooth functions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
In mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
In dynamical systems theory, the baker's map is a chaotic map from the unit square into itself. It is named after a kneading operation that bakers apply to dough: the dough is cut in half, and the two halves are stacked on one another, and compressed. The baker's map can be understood as the bilateral shift operator of a bi-infinite two-state lattice model. The baker's map is topologically conjugate to the horseshoe map. In physics, a chain of coupled baker's maps can be used to model deterministic diffusion.
In symbolic dynamics and related branches of mathematics, a shift space or subshift is a set of infinite words that represent the evolution of a discrete system. In fact, shift spaces and symbolic dynamical systems are often considered synonyms. The most widely studied shift spaces are the subshifts of finite type and the sofic shifts. In the classical framework a shift space is any subset of , where is a finite set, which is closed for the Tychonov topology and invariant by translations.
This paper proposes a data-driven control design method for nonlinear systems that builds upon the Koopman operator framework. In particular, the Koopman operator is used to lift the nonlinear dynamics to a higher-dimensional space where the so-called obse ...
2024
, ,
Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hi ...
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...