**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Christoffel symbols

Summary

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
In general, there are an infinite number of metric connections for a given metric tensor; however, there is a unique connection that is free of torsion, the Levi-Civita connection. It is common in physics and general relativity to work almost exclusively with the Levi-Civita connection, by working in coordinate frames (called holonomic coordinates) where the torsion vanishes. For example, in Euclidean spaces, the Christoffel symbols describe how the local coordinate bases change from point to point.
At each point of the underlying n-dimensional manifold, for any local coordinate system around that point, the Christoffel symbols are denoted Γijk for i, j, k = 1, 2, ..., n. Each entry of this n × n × n array is a real number.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (65)

Related courses (8)

Related MOOCs (1)

Ricci calculus

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.

Affine connection

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

Covariant derivative

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space.

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

CS-526: Learning theory

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

PHYS-428: Relativity and cosmology II

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Related lectures (57)

Tucker Decomposition: Multilinear rank and applications in data compressionCS-526: Learning theory

Covers the Tucker decomposition and its applications in data compression, explaining the notion of multilinear rank and the HOSVD method.

Shells I

Covers linear pressure vessels, thin shells, and critical buckling pressure, emphasizing the dimensional reduction from 3D to 2D.

Tensor PropertiesPHYS-427: Relativity and cosmology I

Covers the properties of tensors and their applications in various fields.