**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Affine connection

Summary

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan (as part of his general theory of connections) and Hermann Weyl (who used the notion as a part of his foundations for general relativity). The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space Rn by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.
On any manifold of positive dimension there are infinitely many affine connections. If the manifold is further endowed with a metric tensor then there is a natural choice of affine connection, called the Levi-Civita connection. The choice of an affine connection is equivalent to prescribing a way of differentiating vector fields which satisfies several reasonable properties (linearity and the Leibniz rule). This yields a possible definition of an affine connection as a covariant derivative or (linear) connection on the tangent bundle. A choice of affine connection is also equivalent to a notion of parallel transport, which is a method for transporting tangent vectors along curves. This also defines a parallel transport on the frame bundle. Infinitesimal parallel transport in the frame bundle yields another description of an affine connection, either as a Cartan connection for the affine group or as a principal connection on the frame bundle.
The main invariants of an affine connection are its torsion and its curvature. The torsion measures how closely the Lie bracket of vector fields can be recovered from the affine connection.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (75)

Related courses (9)

Related MOOCs (1)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

MATH-422: Introduction to riemannian geometry

La géométrie riemannienne est un (peut-être le) chapitre central de la géométrie différentielle et de la géométriec ontemporaine en général. Le sujet est très riche et ce cours est une modeste introdu

MATH-512: Optimization on manifolds

We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

Connection (mathematics)

In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve.

Affine connection

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

Covariant derivative

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space.

Related lectures (83)

Facade Non-Porteuse: Construction DetailsAR-241: Building technology III

Covers the construction details of non-bearing facades and the connection details at a scale of 1/2.

Timber Plates Geometry Generation: Practical AssignmentsMOOC: Advanced Timber Plate Structural Design

Covers timber plates geometry generation, in-plane and out-of-plane connections, insertion order, and various joint types.

Prefabrication in Construction

Explores the prefabrication process in construction, emphasizing precision and efficiency in element implementation.