Résumé
The integral fast reactor (IFR, originally advanced liquid-metal reactor) is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site. The U.S. Department of Energy began designing an IFR in 1984 and built a prototype, the Experimental Breeder Reactor II. On April 3, 1986, two tests demonstrated the safety of the IFR concept. These tests simulated accidents involving loss of coolant flow. Even with its normal shutdown devices disabled, the reactor shut itself down safely without overheating anywhere in the system. The IFR project was canceled by the US Congress in 1994, three years before completion. The proposed Generation IV Sodium-Cooled Fast Reactor is its closest surviving fast breeder reactor design. Other countries have also designed and operated fast reactors. S-PRISM (from SuperPRISM), also called PRISM (Power Reactor Innovative Small Module), is the name of a nuclear power plant design by GE Hitachi Nuclear Energy (GEH) based on the IFR. In 2022, GE Hitachi Nuclear Energy and TerraPower began exploring locating 5 Natrium sodium fast reactors based nuclear power plant design incorporating a PRISM reactor based on the IFR plus Terrapower's Traveling Wave design with a molten salt storage system in Kemmerer, Wyoming. Research on IFR reactors began in 1984 at Argonne National Laboratory in Argonne, Illinois. as a part of the U.S. Department of Energy's national laboratory system, and currently operated on a contract by the University of Chicago. Argonne previously had a branch campus named "Argonne West" in Idaho Falls, Idaho that is now part of the Idaho National Laboratory. In the past, at the branch campus, physicists from Argonne West built what was known as the Experimental Breeder Reactor II (EBR-II). In the meantime, physicists at Argonne designed the IFR concept, and it was decided that the EBR-II would be converted to an IFR.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ENG-431: Safety of chemical processes
The main focus of the lecture is on reactive hazards (thermal process safety) + introduction to explosion protection. While being based on theory, the lecture is oriented towards industrial practice.
Afficher plus
Séances de cours associées (50)
Génie des réactions chimiques
Couvre la dérivation analytique de divers modèles de conception et de dimensionnement du réacteur.
Génie des réactions chimiques
Se concentre sur la cinétique chimique, la conception du réacteur et les compétences de résolution de problèmes avec des modules interactifs pour la participation active.
Introduction à l'ingénierie nucléaire : réacteurs de génération IV
Présente les réacteurs nucléaires de quatrième génération, en se concentrant sur les réacteurs à spectre rapide et leur durabilité, la sélection du combustible fissile, les propriétés des réfrigérants, le développement historique, les avantages, les inconvénients et les principaux défis.
Afficher plus
Publications associées (190)
Concepts associés (22)
Réacteur nucléaire à sels fondus
Le réacteur nucléaire à sels fondus (RSF ; molten salt reactor, MSR) est un concept de réacteur nucléaire dans lequel le combustible nucléaire se présente sous forme liquide, dissous dans du sel fondu (à ) qui joue à la fois le rôle de caloporteur et de barrière de confinement. Le réacteur peut être modéré par du graphite (produisant des neutrons thermiques) ou sans modérateur (neutrons rapides). Le concept a été étudié en laboratoire pendant les années 1960, puis délaissé dans les années 1970 faute de financement et malgré des résultats probants.
Reactor-grade plutonium
Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.
Generation IV reactor
Generation IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
Afficher plus