In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well. By changing grain size, one can influence the number of dislocations piled up at the grain boundary and yield strength. For example, heat treatment after plastic deformation and changing the rate of solidification are ways to alter grain size. In grain-boundary strengthening, the grain boundaries act as pinning points impeding further dislocation propagation. Since the lattice structure of adjacent grains differs in orientation, it requires more energy for a dislocation to change directions and move into the adjacent grain. The grain boundary is also much more disordered than inside the grain, which also prevents the dislocations from moving in a continuous slip plane. Impeding this dislocation movement will hinder the onset of plasticity and hence increase the yield strength of the material. Under an applied stress, existing dislocations and dislocations generated by Frank–Read sources will move through a crystalline lattice until encountering a grain boundary, where the large atomic mismatch between different grains creates a repulsive stress field to oppose continued dislocation motion. As more dislocations propagate to this boundary, dislocation 'pile up' occurs as a cluster of dislocations are unable to move past the boundary. As dislocations generate repulsive stress fields, each successive dislocation will apply a repulsive force to the dislocation incident with the grain boundary. These repulsive forces act as a driving force to reduce the energetic barrier for diffusion across the boundary, such that additional pile up causes dislocation diffusion across the grain boundary, allowing further deformation in the material.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
MSE-310: Deformation of materials
Présentation des mécanismes de déformation des matériaux inorganiques: élasticité, plasticité, fluage.
MSE-304: Surfaces and interfaces
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Show more
Related lectures (92)
Grain Boundaries: Structure and Properties
Explores the structure and properties of grain boundaries in materials, focusing on coherent and semi-coherent boundaries.
Defects in Materials: Structure and Behavior
Explores defects in materials, grain boundaries, grain coarsening kinetics, the glass transition, and vacancy creation.
Mechanisms of Metal Plasticity
Explores metal plasticity mechanisms, including hardening by solid solution and precipitation, dislocation forests, and polymer behavior in relation to temperature and deformation speed.
Show more
Related publications (670)

Solute-strengthening in metal alloys with short-range order

William Curtin, Shankha Nag

Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
2024

Experimental and ab initio derivation of interface stress in nanomultilayered coatings: Application to immiscible Cu/W system with variable in-plane stress

Pandula Manura Liyanage, Claudia Cancellieri, Giacomo Lorenzin

Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
Elsevier2024

Strengthening of edge prism dislocations in Mg-Zn by cross-core diffusion

William Curtin

The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal ...
2024
Show more
Related concepts (7)
Hardness
In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness.
Precipitation hardening
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength. Precipitation hardening relies on changes in solid solubility with temperature to produce fine particles of an impurity phase, which impede the movement of dislocations, or defects in a crystal's lattice.
Superalloy
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance. The crystal structure is typically face-centered cubic (FCC) austenitic. Examples of such alloys are Hastelloy, Inconel, Waspaloy, Rene alloys, Incoloy, MP98T, TMS alloys, and CMSX single crystal alloys.
Show more
Related MOOCs (4)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.