Summary
Degenerate matter occurs when the Pauli exclusion principle significantly alters a state of matter at low temperature. The term used in astrophysics to refer to dense stellar objects such as white dwarfs and neutron stars, where thermal pressure alone is not enough to avoid gravitational collapse. The term also applies to metals in the Fermi gas approximation. Degenerate matter is usually modelled as an ideal Fermi gas, an ensemble of non-interacting fermions. In a quantum mechanical description, particles limited to a finite volume may take only a discrete set of energies, called quantum states. The Pauli exclusion principle prevents identical fermions from occupying the same quantum state. At lowest total energy (when the thermal energy of the particles is negligible), all the lowest energy quantum states are filled. This state is referred to as full degeneracy. This degeneracy pressure remains non-zero even at absolute zero temperature. Adding particles or reducing the volume forces the particles into higher-energy quantum states. In this situation, a compression force is required, and is made manifest as a resisting pressure. The key feature is that this degeneracy pressure does not depend on the temperature but only on the density of the fermions. Degeneracy pressure keeps dense stars in equilibrium, independent of the thermal structure of the star. A degenerate mass whose fermions have velocities close to the speed of light (particle kinetic energy larger than its rest mass energy) is called relativistic degenerate matter. The concept of degenerate stars, stellar objects composed of degenerate matter, was originally developed in a joint effort between Arthur Eddington, Ralph Fowler and Arthur Milne. Eddington had suggested that the atoms in Sirius B were almost completely ionised and closely packed. Fowler described white dwarfs as composed of a gas of particles that became degenerate at low temperature; he also pointed out that ordinary atoms broadly similar in regards to the filling of energy levels by fermions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Show more
Related lectures (35)
Continuum Media, Introduction
Covers the physics of continuum media, temperature gradients, entropy production, and continuity equations.
Quantum Physics: Wave-Particle Duality
Explores wave-particle duality in quantum physics, covering interference, matter waves, and energy quantization.
Astrophysical Objects: Static Systems
Explores spherically symmetric and static astrophysical objects, including black holes and the modeling of matter.
Show more
Related publications (91)

Dilute neutron star matter from neural-network quantum states

Giuseppe Carleo

Low-density neutron matter is characterized by fascinating emergent quantum phenomena, such as the formation of Cooper pairs and the onset of superfluidity. We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-netwo ...
AMER PHYSICAL SOC2023

Brain microstructural and functional MRI: developments and application to a rat model of Alzheimer's disease

Yujian Diao

Magnetic resonance imaging (MRI) has been a valuable tool in investigating the pathological cascade of Alzheimer's disease (AD) and its progression, which are still open questions. Although some MRI-derived hallmarks in terms of functional connectivity and ...
EPFL2023
Show more
Related concepts (23)
Fermi gas
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
Gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formation in the universe. Over time an initial, relatively smooth distribution of matter will collapse to form pockets of higher density, typically creating a hierarchy of condensed structures such as clusters of galaxies, stellar groups, stars and planets.
Matter
In classical physics and general chemistry, matter is any substance with mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat.
Show more