In mathematics, the special linear group SL(n, F) of degree n over a field F is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
where F× is the multiplicative group of F (that is, F excluding 0).
These elements are "special" in that they form an algebraic subvariety of the general linear group – they satisfy a polynomial equation (since the determinant is polynomial in the entries).
When F is a finite field of order q, the notation SL(n, q) is sometimes used.
The special linear group SL(n, R) can be characterized as the group of volume and orientation preserving linear transformations of Rn; this corresponds to the interpretation of the determinant as measuring change in volume and orientation.
When F is R or C, SL(n, F) is a Lie subgroup of GL(n, F) of dimension n2 − 1. The Lie algebra of SL(n, F) consists of all n × n matrices over F with vanishing trace. The Lie bracket is given by the commutator.
Any invertible matrix can be uniquely represented according to the polar decomposition as the product of a unitary matrix and a hermitian matrix with positive eigenvalues. The determinant of the unitary matrix is on the unit circle while that of the hermitian matrix is real and positive and since in the case of a matrix from the special linear group the product of these two determinants must be 1, then each of them must be 1. Therefore, a special linear matrix can be written as the product of a special unitary matrix (or special orthogonal matrix in the real case) and a positive definite hermitian matrix (or symmetric matrix in the real case) having determinant 1.
Thus the topology of the group SL(n, C) is the product of the topology of SU(n) and the topology of the group of hermitian matrices of unit determinant with positive eigenvalues.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by in his work on projective representations. The Schur multiplier of a finite group G is a finite abelian group whose exponent divides the order of G. If a Sylow p-subgroup of G is cyclic for some p, then the order of is not divisible by p. In particular, if all Sylow p-subgroups of G are cyclic, then is trivial.
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If and are two groups, then is an extension of by if there is a short exact sequence If is an extension of by , then is a group, is a normal subgroup of and the quotient group is isomorphic to the group . Group extensions arise in the context of the extension problem, where the groups and are known and the properties of are to be determined.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
We analyze the deformation theory of equivariant vector bundles. In particular, we provide an effective criterion for verifying whether all infinitesimal deformations preserve the equivariant structure. As an application, using rigidity of the Frobenius ho ...
Ulam asked whether every connected Lie group can be represented on a countable structure. This is known in the linear case. We establish it for the first family of non-linear groups, namely in the nilpotent case. Further context is discussed to illustrate ...
We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible N = 1 multiplets and some cases of interest for N = 2. As an application of the formalism we prove that certain N = 2 spinning ...