Résumé
En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires. Le choix des points (ou valeurs) de départ est un élément important dans l'intérêt de la construction. Le type le plus simple d'interpolation de courbe est l'interpolation linéaire, qui consiste à « joindre les points » donnés par des segments de droite. Elle peut servir à estimer les points de la courbe situés entre ceux donnés au départ. Le même principe sert pour estimer les valeurs intermédiaires de celles données dans une table trigonométrique. L'interpolation d'une fonction doit être distinguée de l'approximation de fonction, qui consiste à chercher la fonction la plus proche possible, selon certains critères, d'une fonction donnée. Dans le cas de l'approximation, il n'est en général plus imposé de passer exactement par des points donnés initialement. Ceci permet de mieux prendre en compte le cas des erreurs de mesure, et c'est ainsi que l'exploitation de données expérimentales pour la recherche de lois empiriques relève plus souvent de la régression linéaire, ou plus généralement de la méthode des moindres carrés. Interpolation linéaire thumb|Interpolation linéaire Dans le cas d'une interpolation linéaire, on constitue une courbe d'interpolation qui est une succession de segments. Entre deux points p et p de coordonnées respectives (x , y) et (x , y), l'interpolation est donnée par la formule suivante avec la pente p qui s'exprime comme On utilise ici la fonction cosinus pour modéliser localement la courbe. Deux points seulement sont nécessaires pour évaluer la fonction qui remplace la courbe discrète.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.