Tumor-infiltrating lymphocytes (TIL) are white blood cells that have left the bloodstream and migrated towards a tumor. They include T cells and B cells and are part of the larger category of ‘tumor-infiltrating immune cells’ which consist of both mononuclear and polymorphonuclear immune cells, (i.e., T cells, B cells, natural killer cells, macrophages, neutrophils, dendritic cells, mast cells, eosinophils, basophils, etc.) in variable proportions. Their abundance varies with tumor type and stage and in some cases relates to disease prognosis.
TILs can often be found in the tumor stroma and within the tumor itself. Their functions can dynamically change throughout tumor progression and in response to anticancer therapy
TILs are implicated in killing tumor cells. The presence of lymphocytes in tumors is often associated with better clinical outcomes (after surgery or immunotherapy).
TILs can be found between the tumor cells, as TILs in the stroma surrounding the tumor cells do not count. TILs are often found floating around the tumor without actual penetration or action on the tumor cells. Histologic definitions for TILs vary.
CD3 has been used to detect lymphocytes in tumor samples. Tumor immune infiltration can also be determined using gene expression methods like Microarray or RNA Sequencing through deconvolution methods such as CIBERSORT. Such methods allow for systematic TIL enumeration and characterization of the tumor microenvironment in diverse cancer types and across thousands of tumors, an approach largely led by Ash Alizadeh, Ajit Johnson among others. Detection of gene expression specific for different kind of immune cell populations can then be used to determine the degree of lymphocyte infiltration as has been shown in breast cancer. An active immune environment within the tumor often indicates a better prognosis as can be determined by the Immunological constant of rejection.
They are key to an experimental autologous cell therapy (Contego) for metastatic melanoma.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Cancer immunotherapy (sometimes called immuno-oncology) is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology. Cancer immunotherapy exploits the fact that cancer cells often have tumor antigens, molecules on their surface that can be detected by the antibody proteins of the immune system, binding to them.
Explores the history, mechanisms, and players of cancer immunotherapies, including immune evasion strategies and the role of MHC in antigen presentation.
Dendritic cells (DCs) are specialized myeloid cells with the ability to uptake, process, andpresent antigens to T lymphocytes. They also generate cytokine and chemokine gradients thatregulate immune cell trafficking, activation, and function. Monocyte-deri ...
The advent of immunotherapy, such as immune checkpoint blockade (ICB) and adoptive transfer of cytotoxic lymphocytes, has transformed the clinical care of cancer. However, a significant proportion of patients are resistant to immunotherapy or experience re ...
EPFL2024
, , , , , ,
Elevated peripheral blood and tumor-infiltrating neutrophils are often associated with a poor patient prognosis. However, therapeutic strategies to target these cells are difficult to implement due to the life-threatening risk of neutropenia. In a genetica ...