Concept

Harris affine region detector

Summary
In the fields of computer vision and , the Harris affine region detector belongs to the category of feature detection. Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas. The Harris affine detector can identify similar regions between images that are related through affine transformations and have different illuminations. These affine-invariant detectors should be capable of identifying similar regions in images taken from different viewpoints that are related by a simple geometric transformation: scaling, rotation and shearing. These detected regions have been called both invariant and covariant. On one hand, the regions are detected invariant of the image transformation but the regions covariantly change with image transformation. Do not dwell too much on these two naming conventions; the important thing to understand is that the design of these interest points will make them compatible across images taken from several viewpoints. Other detectors that are affine-invariant include Hessian affine region detector, Maximally stable extremal regions, Kadir–Brady saliency detector, edge-based regions (EBR) and intensity-extrema-based regions (IBR). Mikolajczyk and Schmid (2002) first described the Harris affine detector as it is used today in An Affine Invariant Interest Point Detector. Earlier works in this direction include use of affine shape adaptation by Lindeberg and Garding for computing affine invariant image descriptors and in this way reducing the influence of perspective image deformations, the use affine adapted feature points for wide baseline matching by Baumberg and the first use of scale invariant feature points by Lindeberg; for an overview of the theoretical background. The Harris affine detector relies on the combination of corner points detected through Harris corner detection, multi-scale analysis through Gaussian scale space and affine normalization using an iterative affine shape adaptation algorithm.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.