Summary
Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space. Noether's theorem is used in theoretical physics and the calculus of variations. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws. It also made modern theoretical physicists much more focused on symmetries of physical systems. A generalization of the formulations on constants of motion in Lagrangian and Hamiltonian mechanics (developed in 1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian alone (e.g., systems with a Rayleigh dissipation function). In particular, dissipative systems with continuous symmetries need not have a corresponding conservation law. Briefly, the relationships between symmetries and conservation laws are as follows:
  1. Uniformity of space distance-wise ⟹ conservation of linear momentum;
  2. Isotropy of space direction-wise ⟹ conservation of angular momentum;
  3. Uniformity of time ⟹ conservation of energy As an illustration, if a physical system behaves the same regardless of how it is oriented in space (that is, it's invariant), its Lagrangian is symmetric under continuous rotation: from this symmetry, Noether's theorem dictates that the angular momentum of the system be conserved, as a consequence of its laws of motion. The physical system itself need not be symmetric; a jagged asteroid tumbling in space conserves angular momentum despite its asymmetry. It is the laws of its motion that are symmetric.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.