Axiom of global choiceIn mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set. The axiom of global choice states that there is a global choice function τ, meaning a function such that for every non-empty set z, τ(z) is an element of z.
Diamond principleIn mathematics, and particularly in axiomatic set theory, the diamond principle ◊ is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe (L) and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility (V = L) implies the existence of a Suslin tree. The diamond principle ◊ says that there exists a , a family of sets Aα ⊆ α for α < ω1 such that for any subset A of ω1 the set of α with A ∩ α = Aα is stationary in ω1.
Internal set theoryInternal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, Nelson's approach modifies the axiomatic foundations through syntactic enrichment. Thus, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional ZFC axioms for sets.
DeterminacyDeterminacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws.
Signature (logic)In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic.
Positive set theoryIn mathematical logic, positive set theory is the name for a class of alternative set theories in which the axiom of comprehension holds for at least the positive formulas (the smallest class of formulas containing atomic membership and equality formulas and closed under conjunction, disjunction, existential and universal quantification). Typically, the motivation for these theories is topological: the sets are the classes which are closed under a certain topology.
Absoluteness (logic)In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness.
Conservative extensionIn mathematical logic, a conservative extension is a supertheory of a theory which is often convenient for proving theorems, but proves no new theorems about the language of the original theory. Similarly, a non-conservative extension is a supertheory which is not conservative, and can prove more theorems than the original. More formally stated, a theory is a (proof theoretic) conservative extension of a theory if every theorem of is a theorem of , and any theorem of in the language of is already a theorem of .
Independence (mathematical logic)In mathematical logic, independence is the unprovability of a sentence from other sentences. A sentence σ is independent of a given first-order theory T if T neither proves nor refutes σ; that is, it is impossible to prove σ from T, and it is also impossible to prove from T that σ is false. Sometimes, σ is said (synonymously) to be undecidable from T; this is not the same meaning of "decidability" as in a decision problem. A theory T is independent if each axiom in T is not provable from the remaining axioms in T.