The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second? Based on earlier writings by Carl Friedrich Gauss, David Hilbert conjectured that this is not always possible. This was confirmed within the year by his student Max Dehn, who proved that the answer in general is "no" by producing a counterexample.
The answer for the analogous question about polygons in 2 dimensions is "yes" and had been known for a long time; this is the Wallace–Bolyai–Gerwien theorem.
Unknown to Hilbert and Dehn, Hilbert's third problem was also proposed independently by Władysław Kretkowski for a math contest of 1882 by the Academy of Arts and Sciences of Kraków, and was solved by Ludwik Antoni Birkenmajer with a different method than Dehn's. Birkenmajer did not publish the result, and the original manuscript containing his solution was rediscovered years later.
The formula for the volume of a pyramid,
had been known to Euclid, but all proofs of it involve some form of limiting process or calculus, notably the method of exhaustion or, in more modern form, Cavalieri's principle. Similar formulas in plane geometry can be proven with more elementary means. Gauss regretted this defect in two of his letters to Christian Ludwig Gerling, who proved that two symmetric tetrahedra are equidecomposable.
Gauss' letters were the motivation for Hilbert: is it possible to prove the equality of volume using elementary "cut-and-glue" methods? Because if not, then an elementary proof of Euclid's result is also impossible.
Dehn's proof is an instance in which abstract algebra is used to prove an impossibility result in geometry. Other examples are doubling the cube and trisecting the angle.
Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another). It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved.
In geometry, a pyramid () is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base has n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual. A right pyramid has its apex directly above the centroid of its base. Nonright pyramids are called oblique pyramids. A regular pyramid has a regular polygon base and is usually implied to be a right pyramid.
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
For a set X of integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with X is called the relaxation complexity rc(X). This parameter was introduced by Kaibel & Weltge (2015) and captures the ...
Given an integral polyhedron P subset of R-n and a rational polyhedron Q subset of R-n containing the same integer points as P, we investigate how many iterations of the Chvatal-Gomory closure operator have to be performed on Q to obtain a polyhedron conta ...
We investigate the diameter of a natural abstraction of the 1-skeleton of polyhedra. Even if this abstraction is more general than other abstractions previously studied in the literature, known upper bounds on the diameter of polyhedra continue to hold her ...