Summary
In geometry, a pyramid () is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base has n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual. A right pyramid has its apex directly above the centroid of its base. Nonright pyramids are called oblique pyramids. A regular pyramid has a regular polygon base and is usually implied to be a right pyramid. When unspecified, a pyramid is usually assumed to be a regular square pyramid, like the physical pyramid structures. A triangle-based pyramid is more often called a tetrahedron. Among oblique pyramids, like acute and obtuse triangles, a pyramid can be called acute if its apex is above the interior of the base and obtuse if its apex is above the exterior of the base. A right-angled pyramid has its apex above an edge or vertex of the base. In a tetrahedron these qualifiers change based on which face is considered the base. Pyramids are a class of the prismatoids. Pyramids can be doubled into bipyramids by adding a second offset point on the other side of the base plane. A right pyramid with a regular base has isosceles triangle sides, with symmetry is Cnv or [1,n], with order 2n. It can be given an extended Schläfli symbol ( ) ∨ {n}, representing a point, ( ), joined (orthogonally offset) to a regular polygon, {n}. A join operation creates a new edge between all pairs of vertices of the two joined figures. The trigonal or triangular pyramid with all equilateral triangle faces becomes the regular tetrahedron, one of the Platonic solids. A lower symmetry case of the triangular pyramid is C3v, which has an equilateral triangle base, and 3 identical isosceles triangle sides. The square and pentagonal pyramids can also be composed of regular convex polygons, in which case they are Johnson solids.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.