Concept

Solar cooker

A solar cooker is a device which uses the energy of direct sunlight to heat, cook or pasteurize drink and other food materials. Many solar cookers currently in use are relatively inexpensive, low-tech devices, although some are as powerful or as expensive as traditional stoves, and advanced, large scale solar cookers can cook for hundreds of people. Because they use no fuel and cost nothing to operate, many nonprofit organizations are promoting their use worldwide in order to help reduce fuel costs and air pollution, and to help slow down deforestation and desertification. In ancient times, the use of solar energy was believed to have existed in civilizations amidst the Greeks, Romans and the Chinese, though not for cooking. The first academic description of the principles of a solar cooker is by the Swiss geologist, meteorologist, physicist, and Alpine explorer Horace-Bénédict de Saussure, in 1767. The principle of cooking meals by sunlight was largely developed in the French Foreign Legion, in the 1870s. Concentrating sunlight: A mirrored surface with high specular reflection is used to concentrate light from the Sun into a small cooking area. Depending on the geometry of the surface, sunlight could be concentrated by several orders of magnitude producing temperatures high enough to melt salt and metal. Such high temperatures are not really required for most household solar cooking applications. Solar cooking products are typically designed to achieve temperatures of (baking temperatures) to (grilling/searing temperatures) on a sunny day. Converting light energy to heat energy: Solar cookers concentrate sunlight onto a receiver such as a cooking pan. The interaction between the light energy and the receiver material converts light to heat and this is called absorption. The conversion is maximized by using materials that absorb, conduct, and retain heat. Pots and pans used on solar cookers should be matte black in color to maximize absorption. Trapping heat energy: It is important to reduce convection by isolating the air inside the cooker from the air outside the cooker.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-468: Solar energy conversion
The course will provide fundamentals and technological details of solar energy conversion devices and systems, including 1) solar fuels by photoelectrochemistry, photocatalysis, and solar thermochemis
ME-460: Renewable energy (for ME)
The students assess and compare all renewable energy resources, their real potentials, limitations and best applications (energy services). Solar thermal, solar electric, wood, bioliquids, biogas, hyd
ENG-410: Energy supply, economics and transition
This course examines energy systems from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the energy demand, and how
Show more
Related lectures (35)
Solar Energy: Introduction
Covers solar energy conversion pathways, the sun's spectrum, and location-dependent solar resource availability.
Solar Fuels: Conversion Pathways and Reactor Concepts
Explores solar energy conversion into fuels, reactor concepts, and material requirements for efficient photoelectrochemistry.
Construction of Solutions by Dirichlet-Laplace
Explores the construction of solutions by Dirichlet-Laplace in general domains.
Show more
Related publications (57)

Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars

Sophia Haussener, Byron Stuart Ross

Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resu ...
2023

Tuning the Solar Performance of Building Facades through Polymer 3D Printing: Toward Bespoke Thermo-Optical Properties

Stephen William Wasilewski, Arno Schlueter

Facades are the primary interface controlling the flow of solar energy in buildings and affecting their energy balance and environmental impact. Recently, large-scale 3D printing (3DP) of translucent polymers has been explored as a technique for fabricatin ...
WILEY2023

Modeling reflection by structured building-integrated photovoltaics

Stephen William Wasilewski

Evaluating the reflection of solar radiation by Building Integrated Photovoltaics (BIPV) with structured front-glass is challenging for two reasons. First, the resulting irregular scattering of light cannot be accounted for by simple reflection models. Sec ...
2023
Show more
Related concepts (5)
Concentrated solar power
Concentrated solar power (CSP, also known as concentrating solar power, concentrated solar thermal) systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat (solar thermal energy), which drives a heat engine (usually a steam turbine) connected to an electrical power generator or powers a thermochemical reaction. As of 2021, global installed capacity of concentrated solar power stood at 6.
Solar tracker
A solar tracker is a device that orients a payload toward the Sun. Payloads are usually solar panels, parabolic troughs, fresnel reflectors, lenses, or the mirrors of a heliostat. For flat-panel photovoltaic systems, trackers are used to minimize the angle of incidence between the incoming sunlight and a photovoltaic panel, sometimes known as the cosine error. Reducing this angle increases the amount of energy produced from a fixed amount of installed power-generating capacity.
Parabolic reflector
A parabolic (or paraboloid or paraboloidal) reflector (or dish or mirror) is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.