In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.
The concept of local rings was introduced by Wolfgang Krull in 1938 under the name Stellenringe. The English term local ring is due to Zariski.
A ring R is a local ring if it has any one of the following equivalent properties:
R has a unique maximal left ideal.
R has a unique maximal right ideal.
1 ≠ 0 and the sum of any two non-units in R is a non-unit.
1 ≠ 0 and if x is any element of R, then x or 1 − x is a unit.
If a finite sum is a unit, then it has a term that is a unit (this says in particular that the empty sum cannot be a unit, so it implies 1 ≠ 0).
If these properties hold, then the unique maximal left ideal coincides with the unique maximal right ideal and with the ring's Jacobson radical. The third of the properties listed above says that the set of non-units in a local ring forms a (proper) ideal, necessarily contained in the Jacobson radical. The fourth property can be paraphrased as follows: a ring R is local if and only if there do not exist two coprime proper (principal) (left) ideals, where two ideals I1, I2 are called coprime if R = I1 + I2.
In the case of commutative rings, one does not have to distinguish between left, right and two-sided ideals: a commutative ring is local if and only if it has a unique maximal ideal.
Before about 1960 many authors required that a local ring be (left and right) Noetherian, and (possibly non-Noetherian) local rings were called quasi-local rings. In this article this requirement is not imposed.
A local ring that is an integral domain is called a local domain.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers. Commutative algebra is the main technical tool in the local study of schemes.
Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Springer2024
,
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
Maximally localized Wannier functions (MLWFs) are widely used in electronic-structure calculations. We have recently developed automated approaches to generate MLWFs that represent natural tight-binding sets of atomic-like orbitals; these describe accurate ...