Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media (such as crystals) in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be calculated using the Gladstone–Dale relation. Crystals are often naturally anisotropic, and in some media (such as liquid crystals) it is possible to induce anisotropy by applying an external electric field.
Typical transparent media such as glasses are isotropic, which means that light behaves the same way no matter which direction it is travelling in the medium. In terms of Maxwell's equations in a dielectric, this gives a relationship between the electric displacement field D and the electric field E:
where ε0 is the permittivity of free space and P is the electric polarization (the vector field corresponding to electric dipole moments present in the medium). Physically, the polarization field can be regarded as the response of the medium to the electric field of the light.
In an isotropic and linear medium, this polarization field P is proportional and parallel to the electric field E:
where χ is the electric susceptibility of the medium. The relation between D and E is thus:
where
is the dielectric constant of the medium. The value 1+χ is called the relative permittivity of the medium, and is related to the refractive index n, for non-magnetic media, by
In an anisotropic medium, such as a crystal, the polarisation field P is not necessarily aligned with the electric field of the light E. In a physical picture, this can be thought of as the dipoles induced in the medium by the electric field having certain preferred directions, related to the physical structure of the crystal. This can be written as:
Here χ is not a number as before but a tensor of rank 2, the electric susceptibility tensor. In terms of components in 3 dimensions:
or using the summation convention:
Since χ is a tensor, P is not necessarily colinear with E.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
Explores the generation, manipulation, and applications of polarized light using techniques like polarizers and wave plates.
Explores light-matter interaction, transmission through materials, and Maxwell equations.
Explores dispersion in anisotropic media, covering k surface, uniaxial crystals, double refraction, beam walk-off, and applications of birefringent crystals.
In this paper, a long-distance distributed pressure sensing system based on a special fiber and using frequency-scanned phase-sensitive optical time-domain reflectometry is proposed. The fiber shows high pressure sensitivity (159 MHz/bar) and low loss (3 d ...
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.
A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the half-wave plate, which shifts the polarization direction of linearly polarized light, and the quarter-wave plate, which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well.
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed.
In the past decade, optical diffraction tomography has gained a lot of attention for its ability to create label-free three-dimensional (3D) images of the refractive index distribution of biological samples using scattered fields measured through holograph ...