A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the half-wave plate, which shifts the polarization direction of linearly polarized light, and the quarter-wave plate, which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well. Waveplates are constructed out of a birefringent material (such as quartz or mica, or even plastic), for which the index of refraction is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the wavelength of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce a controlled phase shift between the two polarization components of a light wave, thereby altering its polarization. A common use of waveplates—particularly the sensitive-tint (full-wave) and quarter-wave plates—is in optical mineralogy. Addition of plates between the polarizers of a petrographic microscope makes the optical identification of minerals in thin sections of rocks easier, in particular by allowing deduction of the shape and orientation of the optical indicatrices within the visible crystal sections. This alignment can allow discrimination between minerals which otherwise appear very similar in plane polarized and cross polarized light. A waveplate works by shifting the phase between two perpendicular polarization components of the light wave. A typical waveplate is simply a birefringent crystal with a carefully chosen orientation and thickness. The crystal is cut into a plate, with the orientation of the cut chosen so that the optic axis of the crystal is parallel to the surfaces of the plate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (6)
PHYS-207(c): General physics : quanta
Le cours traite les ondes électromagnétiques (optique géométrique et optique physique) et donne une introduction à la physique quantique.
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
MICRO-562: Biomicroscopy II
Introduction to the different contrast enhancing methods in optical microscopy. Basic hands-on experience with optical microscopes at EPFL's BioImaging and Optics Facility. How to investigate biologic
Show more
Related lectures (36)
Polarized Light through Wave Plates
Covers the polarization of light passing through wave plates and the impact of optical axis orientation.
Circular Polarization and Half-Wave Plate
Corrects question two of QCM two, focusing on circular polarization passing through a half-wave plate.
3D Glasses: Polarizers and Phenomena
Explores the use of glasses in 3D movies and the phenomena observed.
Show more
Related publications (75)

Dual-shot approach for polarization retrieval through a scattering medium

Abhijit Roy

A dual-shot technique based on the field basis addition of two statistically independent speckle patterns is developed to recover an input polarization through a scattering layer. It is proposed theoretically, and demonstrated both numerically and experime ...
Iop Publishing Ltd2024

Multipolar Pseudochirality-Induced Optical Torque

Olivier Martin, Karim Achouri, Andrei Kiselev, Mintae Chung

It has been observed that achiral nanoparticles, such as flat helices, may be subjected to an optical torque even when illuminated by normally incident linearly polarized light. However, the origin of this fascinating phenomenon has so far remained mostly ...
Washington2023

Spun fibres: a quasi circularly birefringent medium

Luc Thévenaz, Ana Gabriela Correa Mena, Xu Cheng

A simplified model describing the polarisation characteristics of spun fibres is proposed, aiming at determining how close to a circularly birefringent medium such a fibre is. This is of crucial importance regarding the interest of such a medium for magnet ...
SPIE2023
Show more
Related concepts (19)
Birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.
Jones calculus
In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized.
Polarization (physics)
Polarization (also polarisation) is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string.
Show more