The effective population size (Ne) is a number that, in some simplified scenarios, corresponds to the number of breeding individuals in the population. More generally, Ne is the number of individuals that an idealised population would need to have in order for some specified quantity of interest (typically change of genetic diversity or inbreeding rates) to be the same as in the real population. Idealised populations are based on unrealistic but convenient simplifications such as random mating, simultaneous birth of each new generation, constant population size, and equal numbers of children per parent. For most quantities of interest and most real populations, the effective population size Ne is usually smaller than the census population size N of a real population. The same population may have multiple effective population sizes, for different properties of interest, including for different genetic loci. The effective population size is most commonly measured with respect to the coalescence time. In an idealised diploid population with no selection at any locus, the expectation of the coalescence time in generations is equal to twice the census population size. The effective population size is measured as within-species genetic diversity divided by four times the mutation rate , because in such an idealised population, the heterozygosity is equal to . In a population with selection at many loci and abundant linkage disequilibrium, the coalescent effective population size may not reflect the census population size at all, or may reflect its logarithm. The concept of effective population size was introduced in the field of population genetics in 1931 by the American geneticist Sewall Wright. Depending on the quantity of interest, effective population size can be defined in several ways. Ronald Fisher and Sewall Wright originally defined it as "the number of breeding individuals in an idealised population that would show the same amount of dispersion of allele frequencies under random genetic drift or the same amount of inbreeding as the population under consideration".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (16)
Genetic hitchhiking
Genetic hitchhiking, also called genetic draft or the hitchhiking effect, is when an allele changes frequency not because it itself is under natural selection, but because it is near another gene that is undergoing a selective sweep and that is on the same DNA chain. When one gene goes through a selective sweep, any other nearby polymorphisms that are in linkage disequilibrium will tend to change their allele frequencies too. Selective sweeps happen when newly appeared (and hence still rare) mutations are advantageous and increase in frequency.
Fixation (population genetics)
In population genetics, fixation is the change in a gene pool from a situation where there exists at least two variants of a particular gene (allele) in a given population to a situation where only one of the alleles remains. That is, the allele becomes fixed. In the absence of mutation or heterozygote advantage, any allele must eventually be lost completely from the population or fixed (permanently established at 100% frequency in the population).
Genetic load
Genetic load is the difference between the fitness of an average genotype in a population and the fitness of some reference genotype, which may be either the best present in a population, or may be the theoretically optimal genotype. The average individual taken from a population with a low genetic load will generally, when grown in the same conditions, have more surviving offspring than the average individual from a population with a high genetic load.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.