Divergence theoremIn vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface.
Loewner's torus inequalityIn differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. In 1949 Charles Loewner proved that every metric on the 2-torus satisfies the optimal inequality where "sys" is its systole, i.e. least length of a noncontractible loop. The constant appearing on the right hand side is the Hermite constant in dimension 2, so that Loewner's torus inequality can be rewritten as The inequality was first mentioned in the literature in .
Systolic geometryIn mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry. The systole of a compact metric space X is a metric invariant of X, defined to be the least length of a noncontractible loop in X (i.e.
Scalar curvatureIn the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls.
HolonomyIn differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy.
HelicoidThe helicoid, also known as helical surface, after the plane and the catenoid, is the third minimal surface to be known. It was described by Euler in 1774 and by Jean Baptiste Meusnier in 1776. Its name derives from its similarity to the helix: for every point on the helicoid, there is a helix contained in the helicoid which passes through that point.
PseudosphereIn geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius R is a surface in having curvature −1/R2 in each point. Its name comes from the analogy with the sphere of radius R, which is a surface of curvature 1/R2. The term was introduced by Eugenio Beltrami in his 1868 paper on models of hyperbolic geometry. TOC The same surface can be also described as the result of revolving a tractrix about its asymptote. For this reason the pseudosphere is also called tractroid.
Isoperimetric inequalityIn mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume , where is a unit sphere. The equality holds only when is a sphere in . On a plane, i.e. when , the isoperimetric inequality relates the square of the circumference of a closed curve and the area of a plane region it encloses. Isoperimetric literally means "having the same perimeter".
Poincaré metricIn mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces. There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane. The Poincaré disk model defines a model for hyperbolic space on the unit disk.
Ruled surfaceIn geometry, a surface S is ruled (also called a scroll) if through every point of S there is a straight line that lies on S. Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle.