Concept

Computability theory

Related concepts (50)
Turing jump
In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X′ with the property that X′ is not decidable by an oracle machine with an oracle for X. The operator is called a jump operator because it increases the Turing degree of the problem X. That is, the problem X′ is not Turing-reducible to X. Post's theorem establishes a relationship between the Turing jump operator and the arithmetical hierarchy of sets of natural numbers.
Gödel numbering
In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his incompleteness theorems. () A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols.
Many-one reduction
In computability theory and computational complexity theory, a many-one reduction (also called mapping reduction) is a reduction which converts instances of one decision problem (whether an instance is in ) to another decision problem (whether an instance is in ) using an effective function. The reduced instance is in the language if and only if the initial instance is in its language . Thus if we can decide whether instances are in the language , we can decide whether instances are in its language by applying the reduction and solving .
Hyperarithmetical theory
In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory. The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory.
Post's theorem
In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees. Arithmetical hierarchy#Relation to Turing machines The statement of Post's theorem uses several concepts relating to definability and recursion theory. This section gives a brief overview of these concepts, which are covered in depth in their respective articles. The arithmetical hierarchy classifies certain sets of natural numbers that are definable in the language of Peano arithmetic.
Church–Turing thesis
In computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing.
Chaitin's constant
In the computer science subfield of algorithmic information theory, a Chaitin constant (Chaitin omega number) or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin. Although there are infinitely many halting probabilities, one for each method of encoding programs, it is common to use the letter Ω to refer to them as if there were only one.
Rózsa Péter
Rózsa Péter, born Rózsa Politzer, (17 February 1905 – 16 February 1977) was a Hungarian mathematician and logician. She is best known as the "founding mother of recursion theory". Péter was born in Budapest, Hungary, as Rózsa Politzer (Hungarian: Politzer Rózsa). She attended Pázmány Péter University (now Eötvös Loránd University), originally studying chemistry but later switching to mathematics. She attended lectures by Lipót Fejér and József Kürschák.
Reverse mathematics
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory.
Computable ordinal
In mathematics, specifically computability and set theory, an ordinal is said to be computable or recursive if there is a computable well-ordering of a computable subset of the natural numbers having the order type . It is easy to check that is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by .

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.