Nominal power is the nameplate capacity of photovoltaic (PV) devices, such as solar cells, modules and systems. It is determined by measuring the electric current and voltage in a circuit, while varying the resistance under precisely defined conditions. The nominal power is important for designing an installation in order to correctly dimension its cabling and converters.
The peak power is not the same as the power under actual radiation conditions. In practice, this will be approximately 15-20% lower due to the considerable heating of the solar cells.
Moreover, in installations where electricity is converted to AC, such as solar power plants, the actual total electricity generation capacity is limited by the inverter, which is usually sized at a lower peak capacity than the solar system for economic reasons. Since the peak DC power is reached only for a few hours each year, using a smaller inverter allows to save money on the inverter while clipping (wasting) only a very small portion of the total energy production. The capacity of the power plant after DC-AC conversion is usually reported in WAC as opposed to Wp or WDC.
The nominal power of PV devices is measured under standard test conditions (STC), specified in standards such as IEC 61215, IEC 61646 and UL 1703. Specifically, the light intensity is 1000 W/m2, with a spectrum similar to sunlight hitting the earth's surface at latitude 35°N in the summer (airmass 1.5), the temperature of the cells being 25 °C. The power is measured while varying the resistive load on the module between an open and closed circuit (between maximum and minimum resistance). The highest power thus measured is the 'nominal' power of the module in watts. This nominal power divided by the light power that falls on a given area of a photovoltaic device (area × 1000 W/m2) defines its efficiency, the ratio of the device's electrical output to the incident energy.
In the context of domestic PV installations, the kilowatt (symbol kW) is the most common unit for peak power, for example Ppeak = 1 kW.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Concentrator photovoltaics (CPV) (also known as concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency. Systems using high-concentration photovoltaics (HCPV) possess the highest efficiency of all existing PV technologies, achieving near 40% for production modules and 30% for systems.
The balance of system (BOS) encompasses all components of a photovoltaic system other than the photovoltaic panels. This includes wiring, switches, a mounting system, one or many solar inverters, a battery bank and battery charger. Other optional components include renewable energy credit revenue-grade meter, maximum power point tracker (MPPT), GPS solar tracker, Energy management software, solar concentrators, solar irradiance sensors, anemometer, or task-specific accessories designed to meet specialized requirements for a system owner.
A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building-mounted and other decentralized solar power because they supply power at the utility level, rather than to a local user or users. Utility-scale solar is sometimes used to describe this type of project.
In this class we will review the fundamental origin of the optical properties exhibited by different classes of materials. We will then give examples of the most up-to-date research on optical materia
This class is intended to make students familiar with dye sensitized solar cells. It presents the principle of design and rationalize the influence of various components on the power conversion effici
The objective of this lecture is to give an in-depth understanding of the physics and manufacturing processes of photovoltaic solar cells and related devices (photodetectors, photoconductors). The pri
Explores the challenges and opportunities of photovoltaics as a main energy transition option, covering grid parity, storage solutions, and market dynamics.
Solid-State Transformers with Input-Series/Output- Parallel configuration offer a convenient solution for AC/DC power conversion, thanks to their modularity, scalability and flexibility. However, as known, they are affected by a second-order harmonic rippl ...
2024
The thesis presents methods for controlling and planning distributed energy resources (DERs) in active distribution networks (ADNs). It deals with three main challenges: (i) developing and experimentally validating grid-aware real-time control frameworks, ...
The paper presents a method for the co-optimization of energy storage systems allocation and line reinforcement in active distribution networks. The objective is to guarantee the capability of an active distribution network to follow a dispatch plan by app ...