A mechanical or physical shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation.
Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g) represents multiples of the acceleration of gravity and is conventionally used.
A shock pulse can be characterised by its peak acceleration, the duration, and the shape of the shock pulse (half sine, triangular, trapezoidal, etc.). The shock response spectrum is a method for further evaluating a mechanical shock.
Shock measurement is of interest in several fields such as
Propagation of heel shock through a runner's body
Measure the magnitude of a shock need to cause damage to an item: fragility.
Measure shock attenuation through athletic flooring
Measuring the effectiveness of a shock absorber
Measuring the shock absorbing ability of package cushioning
Measure the ability of an athletic helmet to protect people
Measure the effectiveness of shock mounts
Determining the ability of structures to resist seismic shock: earthquakes, etc.
Determining whether personal protective fabric attenuates or amplifies shocks
Verifying that a Naval ship and its equipment can survive explosive shocks
Shocks are usually measured by accelerometers but other transducers and high speed imaging are also used. A wide variety of laboratory instrumentation is available; stand-alone shock data loggers are also used.
Field shocks are highly variable and often have very uneven shapes. Even laboratory controlled shocks often have uneven shapes and include short duration spikes; Noise can be reduced by appropriate digital or analog filtering.
Governing test methods and specifications provide detail about the conduct of shock tests. Proper placement of measuring instruments is critical. Fragile items and packaged goods respond with variation to uniform laboratory shocks; Replicate testing is often called for.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mechanics, an impact is when two bodies collide. During this collision, both bodies decelerate. The deceleration causes a high force or shock, applied over a short time period. A high force, over a short duration, usually causes more damage to both bodies than a lower force applied over a proportionally longer duration. At normal speeds, during a perfectly inelastic collision, an object struck by a projectile will deform, and this deformation will absorb most or all of the force of the collision.
An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame; this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.
A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy (typically heat) which is then dissipated. Most shock absorbers are a form of dashpot (a damper which resists motion via viscous friction). Pneumatic and hydraulic shock absorbers are used in conjunction with cushions and springs. An automobile shock absorber contains spring-loaded check valves and orifices to control the flow of oil through an internal piston (see below).
Etudiez les sciences ou l'ingénierie à l'université avec les méthodes de travail les plus efficaces selon la recherche.
, , , , , , , , ,
Présentation des mécanismes de déformation des matériaux inorganiques: élasticité, plasticité, fluage.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Three point bending and impact tests with sub-sized Charpy specimens were performed on the JRQ reference steel for reactor pressure vessels. Quasi-static and dynamic fracture toughness data were calculated and the fracture behavior in the ductile to brittl ...
The present paper focuses on the simulation of the high-velocity impact of a projectile impacting on a water-jet, causing the onset, development and collapse of cavitation. The simulation of the fluid motion is carried out using an explicit, compressible, ...
PERGAMON-ELSEVIER SCIENCE LTD2019
,
For high-impact devices, subsequent vibrations have as much influence on the deterioration of the mechanical structure as the impact itself. To mitigate the consequences of both impacts and resulting vibrations, it is crucial to accurately understand the p ...