Summary
In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself). Several pathfinding algorithms, including Dijkstra's algorithm and the A* search algorithm, internally build a spanning tree as an intermediate step in solving the problem. In order to minimize the cost of power networks, wiring connections, piping, automatic speech recognition, etc., people often use algorithms that gradually build a spanning tree (or many such trees) as intermediate steps in the process of finding the minimum spanning tree. The Internet and many other telecommunications networks have transmission links that connect nodes together in a mesh topology that includes some loops. In order to avoid bridge loops and routing loops, many routing protocols designed for such networks—including the Spanning Tree Protocol, Open Shortest Path First, Link-state routing protocol, Augmented tree-based routing, etc.—require each router to remember a spanning tree. A special kind of spanning tree, the Xuong tree, is used in topological graph theory to find graph embeddings with maximum genus. A Xuong tree is a spanning tree such that, in the remaining graph, the number of connected components with an odd number of edges is as small as possible. A Xuong tree and an associated maximum-genus embedding can be found in polynomial time. A tree is a connected undirected graph with no cycles. It is a spanning tree of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.