In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p (the case of roots corresponds to the case of degree 1 for one of the factors).
By passing to the "limit" (in fact this is an inverse limit) when the power of p tends to infinity, it follows that a root or a factorization modulo p can be lifted to a root or a factorization over the p-adic integers.
These results have been widely generalized, under the same name, to the case of polynomials over an arbitrary commutative ring, where p is replaced by an ideal, and "coprime polynomials" means "polynomials that generate an ideal containing 1".
Hensel's lemma is fundamental in p-adic analysis, a branch of analytic number theory.
The proof of Hensel's lemma is constructive, and leads to an efficient algorithm for Hensel lifting, which is fundamental for factoring polynomials, and gives the most efficient known algorithm for exact linear algebra over the rational numbers.
Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form where p is a prime number).
Making this precise requires a generalization of the usual modular arithmetic, and so it is useful to define accurately the terminology that is commonly used in this context.
Let R be a commutative ring, and I an ideal of R.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers. The theory of complex-valued numerical functions on the p-adic numbers is part of the theory of locally compact groups. The usual meaning taken for p-adic analysis is the theory of p-adic-valued functions on spaces of interest. Applications of p-adic analysis have mainly been in number theory, where it has a significant role in diophantine geometry and diophantine approximation.
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
We establish p-adic versions of the Manin-Mumford conjecture, which states that an irreducible subvariety of an abelian variety with dense torsion has to be the translate of a subgroup by a torsion point. We do so in the context of certain rigid analytic s ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...