Summary
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p (the case of roots corresponds to the case of degree 1 for one of the factors). By passing to the "limit" (in fact this is an inverse limit) when the power of p tends to infinity, it follows that a root or a factorization modulo p can be lifted to a root or a factorization over the p-adic integers. These results have been widely generalized, under the same name, to the case of polynomials over an arbitrary commutative ring, where p is replaced by an ideal, and "coprime polynomials" means "polynomials that generate an ideal containing 1". Hensel's lemma is fundamental in p-adic analysis, a branch of analytic number theory. The proof of Hensel's lemma is constructive, and leads to an efficient algorithm for Hensel lifting, which is fundamental for factoring polynomials, and gives the most efficient known algorithm for exact linear algebra over the rational numbers. Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form where p is a prime number). Making this precise requires a generalization of the usual modular arithmetic, and so it is useful to define accurately the terminology that is commonly used in this context. Let R be a commutative ring, and I an ideal of R.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (8)