En mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton.
La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont Z (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.
On considère un polynôme P à coefficients dans Z (l'anneau des entiers p-adiques, avec p premier).
Lemme de Hensel version 1.
S'il existe tel que
alors, il existe tel que
Plus généralement, si un anneau noethérien A est complet pour la topologie I-adique pour un certain idéal I et si P est un polynôme à coefficients dans A alors, tout élément α de A tel que, modulo I, P(α) soit nul et P(α) soit inversible, se relève de façon unique en une racine de P dans A.
La condition est essentielle. Ainsi, l'équation n'a pas de solution dans (une telle solution devrait être congrue à 2 modulo 5 ; posant , on aurait donc , ce qui est absurde, puisque 30 n'est pas divisible par 25), alors qu'elle en a une dans , puisque est divisible par 5 ; cela s'explique car est identiquement nul dans .
Lemme de Hensel version 2.
S'il existe tel que, pour un certain entier N, on ait
alors, il existe tel que
Lemme de Hensel version 3.
Soient K un corps valué non archimédien complet, |∙| une valeur absolue sur K associée à sa valuation, O son anneau des entiers, f ∈ O[X] et x un élément de O tel queAlors :
la suite définie par et la formule de récurrence : est bien définie et vérifie
elle converge dans O vers une racine ξ de f et
ξ est la seule racine de f dans la boule ouverte de O de centre x et de rayon f(x)/f (x).
Lemme de Hensel version 4.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
L’analyse p-adique est une branche des mathématiques qui traite des fonctions de nombres p-adiques. Ses principales applications concernent la théorie des nombres : elle est utilisée dans l'étude des équations diophantiennes (c'était la motivation de Hensel pour définir les nombres p-adiques) ; l'étude des fonctions spéciales p-adiques (fonctions exponentielle et logarithme, fonctions zêta, gamma) permet de mieux comprendre l'arithmétique cachée dans les valeurs spéciales des fonctions réelles ; l'analyse fonctionnelle p-adique joue un rôle important dans l'étude des représentations de certains .
En algèbre, une complétion est l'un des foncteurs sur les anneaux et les modules qui produit des anneaux topologiques et modules topologiques complets. La complétion est similaire à la localisation et, ensemble, ce sont des outils de base pour étudier les anneaux commutatifs. Les anneaux commutatifs complets ont une structure plus simple que les anneaux généraux, et on peut y appliquer le lemme de Hensel.
Couvre le théorème d'expansion p-adique et le lemme de Hensel dans Qp.
Explore les techniques de linéarisation exactes pour transformer les systèmes non linéaires en systèmes linéaires, en mettant l'accent sur la stabilité du système.
Explore la linéarisation exacte, déterminant les conditions et les transformations à l'aide du support de Lie et du crochet de Lie.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
WALTER DE GRUYTER GMBH2021
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
We establish p-adic versions of the Manin-Mumford conjecture, which states that an irreducible subvariety of an abelian variety with dense torsion has to be the translate of a subgroup by a torsion point. We do so in the context of certain rigid analytic s ...