In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750, although Colin Maclaurin also published special cases of the rule in 1748 (and possibly knew of it as early as 1729).
Cramer's rule implemented in a naive way is computationally inefficient for systems of more than two or three equations. In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant. Cramer's rule can also be numerically unstable even for 2×2 systems. However, it has recently been shown that Cramer's rule can be implemented with the same complexity as Gaussian elimination, (consistently requires twice as many arithmetic operations and has the same numerical stability when the same permutation matrices are applied).
Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows:
where the n × n matrix A has a nonzero determinant, and the vector is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns are given by:
where is the matrix formed by replacing the i-th column of A by the column vector b.
A more general version of Cramer's rule considers the matrix equation
where the n × n matrix A has a nonzero determinant, and X, B are n × m matrices. Given sequences and , let be the k × k submatrix of X with rows in and columns in . Let be the n × n matrix formed by replacing the column of A by the column of B, for all .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices. The requirement that the square matrix be smaller than the original matrix is often omitted in the definition.
Explores determinants, similarity invariance, Cramer's formula, and geometric interpretations in matrices.
In urban air mobility (UAM) networks, takeoff and landing sites, called vertiports, are likely to experience intermittent closures due to, e.g., adverse weather. To ensure safety, all in-flight urban air vehicles (UAVs) in a UAM network must therefore have ...
2024
The paper proposes a variant of sesqui-pushout rewriting (SqPO) that allows one to develop the theory of nested application conditions (NACs) for arbitrary rule spans; this is a considerable generalisation compared with existing results for NACs, which onl ...
Automatically extracting linear structures from images is a fundamental low-level vision problem with numerous applications in different domains. Centerline detection and radial estimation are the first crucial steps in most Computer Vision pipelines aimin ...