Summary
Chemical biology is a scientific discipline between the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. In contrast to biochemistry, which involves the study of the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology deals with chemistry applied to biology (synthesis of biomolecules, the simulation of biological systems, etc.). Some forms of chemical biology attempt to answer biological questions by studying biological systems at the chemical level. In contrast to research using biochemistry, genetics, or molecular biology, where mutagenesis can provide a new version of the organism, cell, or biomolecule of interest, chemical biology probes systems in vitro and in vivo with small molecules that have been designed for a specific purpose or identified on the basis of biochemical or cell-based screening (see chemical genetics). Chemical biology is one of several interdisciplinary sciences that tend to differ from older, reductionist fields and whose goals are to achieve a description of scientific holism. Chemical biology has scientific, historical and philosophical roots in medicinal chemistry, supramolecular chemistry, bioorganic chemistry, pharmacology, genetics, biochemistry, and metabolic engineering. Chemical biologists work to improve proteomics through the development of enrichment strategies, chemical affinity tags, and new probes. Samples for proteomics often contain many peptide sequences and the sequence of interest may be highly represented or of low abundance, which creates a barrier for their detection. Chemical biology methods can reduce sample complexity by selective enrichment using affinity chromatography. This involves targeting a peptide with a distinguishing feature like a biotin label or a post translational modification.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (17)
BIO-618: Practical - Schuhmacher Lab
It's all about the lipids: We use a chemical biology approach to answer outstanding questions in membrane biology. We show you how to use our lipid tools that allow you to manipulate lipid concentra
CH-412: Frontiers in chemical biology
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
CH-313: Chemical biology
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Show more