In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A^: The concept of normal matrices can be extended to normal operators on infinite dimensional normed spaces and to normal elements in C-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable to analysis. The spectral theorem states that a matrix is normal if and only if it is unitarily similar to a diagonal matrix, and therefore any matrix A satisfying the equation AA = AA is diagonalizable. The converse does not hold because diagonalizable matrices may have non-orthogonal eigenspaces. The left and right singular vectors in the singular value decomposition of a normal matrix differ only in complex phase from each other and from the corresponding eigenvectors, since the phase must be factored out of the eigenvalues to form singular values. Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal, with all eigenvalues being unit modulus, real, and imaginary, respectively. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal, with all eigenvalues being complex conjugate pairs on the unit circle, real, and imaginary, respectively. However, it is not the case that all normal matrices are either unitary or (skew-)Hermitian, as their eigenvalues can be any complex number, in general. For example, is neither unitary, Hermitian, nor skew-Hermitian, because its eigenvalues are ; yet it is normal because The concept of normality is important because normal matrices are precisely those to which the spectral theorem applies: The diagonal entries of Λ are the eigenvalues of A, and the columns of U are the eigenvectors of A. The matching eigenvalues in Λ come in the same order as the eigenvectors are ordered as columns of U.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (21)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-115(a): Advanced linear algebra II - diagonalization
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Show more
Related publications (32)
Related concepts (26)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Eigenvalues and eigenvectors
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Diagonalizable matrix
In linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of .
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.