**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Logit

Summary

In statistics, the logit (ˈloʊdʒɪt ) function is the quantile function associated with the standard logistic distribution. It has many uses in data analysis and machine learning, especially in data transformations.
Mathematically, the logit is the inverse of the standard logistic function , so the logit is defined as
Because of this, the logit is also called the log-odds since it is equal to the logarithm of the odds where p is a probability. Thus, the logit is a type of function that maps probability values from to real numbers in , akin to the probit function.
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.:
The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used. The choice of base corresponds to the choice of logarithmic unit for the value: base 2 corresponds to a shannon, base e to a “nat”, and base 10 to a hartley; these units are particularly used in information-theoretic interpretations. For each choice of base, the logit function takes values between negative and positive infinity.
The “logistic” function of any number is given by the inverse-logit:
The difference between the logits of two probabilities is the logarithm of the odds ratio (R), thus providing a shorthand for writing the correct combination of odds ratios only by adding and subtracting:
There have been several efforts to adapt linear regression methods to a domain where the output is a probability value, , instead of any real number . In many cases, such efforts have focused on modeling this problem by mapping the range to and then running the linear regression on these transformed values. In 1934 Chester Ittner Bliss used the cumulative normal distribution function to perform this mapping and called his model probit an abbreviation for "probability unit";. However, this is computationally more expensive.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (14)

Related MOOCs (2)

Related lectures (98)

Related concepts (22)

FIN-403: Econometrics

The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.

MATH-463: Mathematical modelling of behavior

Discrete choice models allow for the analysis and prediction of individuals' choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marke

CS-421: Machine learning for behavioral data

Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Summarizes mixtures of logit models, covering various mixing methods and modeling techniques for taste heterogeneity.

Covers the theory behind Maximum Likelihood Estimation, discussing properties and applications in binary choice and ordered multiresponse models.

Explores the Red bus/Blue bus paradox, nested logit models, and multivariate extreme value models in transportation.

In statistics, the logit (ˈloʊdʒɪt ) function is the quantile function associated with the standard logistic distribution. It has many uses in data analysis and machine learning, especially in data transformations. Mathematically, the logit is the inverse of the standard logistic function , so the logit is defined as Because of this, the logit is also called the log-odds since it is equal to the logarithm of the odds where p is a probability. Thus, the logit is a type of function that maps probability values from to real numbers in , akin to the probit function.

In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear combination of one or more independent variables. In regression analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model (the coefficients in the linear combination).

A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with the equation where For values of in the domain of real numbers from to , the S-curve shown on the right is obtained, with the graph of approaching as approaches and approaching zero as approaches . The logistic function finds applications in a range of fields, including biology (especially ecology), biomathematics, chemistry, demography, economics, geoscience, mathematical psychology, probability, sociology, political science, linguistics, statistics, and artificial neural networks.