**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Unipotent

Summary

In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.
In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1.
The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.
In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent.
Consider the group of upper-triangular matrices with 's along the diagonal, so they are the group of matrices
Then, a unipotent group can be defined as a subgroup of some . Using scheme theory the group can be defined as the group scheme
and an affine group scheme is unipotent if it is a closed group scheme of this scheme.
An element x of an affine algebraic group is unipotent when its associated right translation operator, rx, on the affine coordinate ring A[G] of G is locally unipotent as an element of the ring of linear endomorphism of A[G]. (Locally unipotent means that its restriction to any finite-dimensional stable subspace of A[G] is unipotent in the usual ring-theoretic sense.)
An affine algebraic group is called unipotent if all its elements are unipotent. Any unipotent algebraic group is isomorphic to a closed subgroup of the group of upper triangular matrices with diagonal entries 1, and conversely any such subgroup is unipotent. In particular any unipotent group is a nilpotent group, though the converse is not true (counterexample: the diagonal matrices of GLn(k)).
For example, the standard representation of on with standard basis has the fixed vector .
If a unipotent group acts on an affine variety, all its orbits are closed, and if it acts linearly on a finite-dimensional vector space then it has a non-zero fixed vector.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (16)

Related people (2)

Related concepts (9)

Related courses (2)

Related MOOCs (9)

Related lectures (12)

MATH-479: Linear algebraic groups

The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.

MATH-679: Group schemes

This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Unipotent

In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n. In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1. The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.

Semi-simplicity

In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, , and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context. For example, if G is a finite group, then a nontrivial finite-dimensional representation V over a field is said to be simple if the only subrepresentations it contains are either {0} or V (these are also called irreducible representations).

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).

Jordan decomposition: Lie algebra

Delves into the Jordan decomposition in Lie algebras of linear algebraic groups.

Quotients: Geometrical Properties

Delves into the geometrical properties of quotients by linearly reductive groups, emphasizing the uniqueness of closed orbits and the concept of a geometric quotient.

Unipotent Elements

Explores regular homomorphisms and unipotent elements in group theory.

Let $G$ be a classical group with natural module $V$ over an algebraically closed field of good characteristic. For every unipotent element $u$ of $G$, we describe the Jordan block sizes of $u$ o

2019Let $G$ be a simple linear algebraic group over an algebraically closed field $K$ of characteristic $p \geq 0$. In this thesis, we investigate closed connected reductive subgroups $X < G$ that contain

In a number of cases the minimal polynomials of the images of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in good characteristics are found

2019