Furnace (central heating) and Condensing boiler
A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.
In a fossil fuel power plant using a steam cycle for power generation, the primary heat source will be combustion of coal, oil, or natural gas. In some cases byproduct fuel such as the carbon monoxide rich offgasses of a coke battery can be burned to heat a boiler; biofuels such as bagasse, where economically available, can also be used. In a nuclear power plant, boilers called steam generators are heated by the heat produced by nuclear fission. Where a large volume of hot gas is available from some process, a heat recovery steam generator or recovery boiler can use the heat to produce steam, with little or no extra fuel consumed; such a configuration is common in a combined cycle power plant where a gas turbine and a steam boiler are used. In all cases the combustion product waste gases are separate from the working fluid of the steam cycle, making these systems examples of external combustion engines.
The pressure vessel of a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel, especially of the austenitic types, is not used in wetted parts of boilers due to corrosion and stress corrosion cracking. However, ferritic stainless steel is often used in superheater sections that will not be exposed to boiling water, and electrically-heated stainless steel shell boilers are allowed under the European "Pressure Equipment Directive" for production of steam for sterilizers and disinfectors.
In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La transition énergique suisse / Energiewende in der Schweiz
La transition énergique suisse / Energiewende in der Schweiz
This course aims at studying thermal power cycles, heat pumping technologies, and equipment.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
This course presents an overview of (i) the current energy system and uses (ii) the main principles of conventional and renewable energy technologies and (iii) the most important parameters that defin
A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material (usually coal, oil or, rarely, wood) to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels. In most locomotives, the steam is admitted alternately to each end of its cylinders in which pistons are mechanically connected to the locomotive's main wheels.
A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.
In thermodynamics, the thermal efficiency () is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work).
Explores steam turbine efficiency, design parameters, and off-design characteristics, emphasizing the impact of operating conditions and system components.
Analytical wind turbine wake models are widely used to predict the wake velocity deficit. In these models, the wake growth rate is a key parameter specified mainly with empirical formulations. In this study, a new physics-based model is proposed and valida ...
2022
, ,
The requirement for sustainable development has prompted the researchers to explore solutions for better utilization of renewable energy resources in the future. Biomass is a promising resource and it can be converted to multiple products and services incl ...
2019
, ,
The recent geopolitical conflicts in Europe highlighted the sensibility of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy system configurations to ensure energy supply stability, it is necess ...