The relational calculus consists of two calculi, the tuple relational calculus and the domain relational calculus, that is part of the relational model for databases and provide a declarative way to specify database queries. The raison d'être of relational calculus is the formalization of query optimization, which is finding more efficient manners to execute the same query in a database. The relational calculus is similar to the relational algebra, which is also part of the relational model: While the relational calculus is meant as a declarative language that prescribes no execution order on the subexpressions of a relational calculus expression, the relational algebra is meant as an imperative language: the sub-expressions of a relational algebraic expression are meant to be executed from left-to-right and inside-out following their nesting. Per Codd's theorem, the relational algebra and the domain-independent relational calculus are logically equivalent. A relational algebra expression might prescribe the following steps to retrieve the phone numbers and names of book stores that supply Some Sample Book: Join book stores and titles over the BookstoreID. Restrict the result of that join to tuples for the book Some Sample Book. Project the result of that restriction over StoreName and StorePhone. A relational calculus expression would formulate this query in the following descriptive or declarative manner: Get StoreName and StorePhone for book stores such that there exists a title BK with the same BookstoreID value and with a BookTitle value of Some Sample Book. The relational algebra and the domain-independent relational calculus are logically equivalent: for any algebraic expression, there is an equivalent expression in the calculus, and vice versa. This result is known as Codd's theorem. The raison d'être of the relational calculus is the formalization of query optimization. Query optimization consists in determining from a query the most efficient manner (or manners) to execute it.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
CS-300: Data-intensive systems
This course covers the data management system design concepts using a hands-on approach.
CS-723: Topics in Machine Learning Systems
This course will cover the latest technologies, platforms and research contributions in the area of machine learning systems. The students will read, review and present papers from recent venues acros
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.