In group theory, an inverse semigroup (occasionally called an inversion semigroup) S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.
(The convention followed in this article will be that of writing a function on the right of its argument, e.g. x f rather than f(x), and
composing functions from left to right—a convention often observed in semigroup theory.)
Inverse semigroups were introduced independently by Viktor Vladimirovich Wagner in the Soviet Union in 1952, and by Gordon Preston in the United Kingdom in 1954. Both authors arrived at inverse semigroups via the study of partial bijections of a set: a partial transformation α of a set X is a function from A to B, where A and B are subsets of X. Let α and β be partial transformations of a set X; α and β can be composed (from left to right) on the largest domain upon which it "makes sense" to compose them:
where α−1 denotes the under α. Partial transformations had already been studied in the context of pseudogroups. It was Wagner, however, who was the first to observe that the composition of partial transformations is a special case of the composition of binary relations. He recognised also that the domain of composition of two partial transformations may be the empty set, so he introduced an empty transformation to take account of this. With the addition of this empty transformation, the composition of partial transformations of a set becomes an everywhere-defined associative binary operation. Under this composition, the collection of all partial one-one transformations of a set X forms an inverse semigroup, called the symmetric inverse semigroup (or monoid) on X, with inverse the functional inverse defined from image to domain (equivalently, the converse relation).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce projet transversal vise à expérimenter autour d'un cas d'étude choisi, les spécificités de « l'envers du sol ». Sur un site choisi, les étudiants seront invités à proposer un geste technique et arc
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup.
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
We give a direct construction of a specific central idempotent in the endomorphism algebra of a finite lattice T. This idempotent is associated with all possible sublattices of T which are totally ordered. A generalization is considered in a conjectural fa ...