Résumé
En mathématiques, et notamment en algèbre, un demi-groupe inversif est un demi-groupe où tout élément a un inverse unique au sens des demi-groupes : pour tout élément de , il existe un élément unique de tel que et . Les demi-groupes inversifs apparaissent dans un certain nombre de contextes. L'exemple le plus courant est le demi-groupe des bijections partielles d'une ensemble dans lui-même appelé le demi-groupe inversif symétrique ou monoïde inversif symétrique sur cet ensemble. Dans cette page, on écrit la fonction à droite de son argument, soit au lieu de , une convention que l'on rencontre fréquemment dans la théorie des demi-groupes. Les demi-groupes inversifs ont été introduits indépendamment par en 1952 et par Gordon Preston en 1954. Les deux auteurs arrivent aux demi-groupes inversifs via leur étude des bijections partielles d'un ensemble: une transformation partielle ou fonction d'un ensemble est une application de sur , où et sont des sous-ensembles de . Si et sont deux transformations, de , on peut les composer (de gauche à droite) sur le plus grand domaine où la composition a un sens, à savoir où dénote l'inverse de . Wagner était le premier à observer que la composition de transformations partielles est un cas particulier du produit de relations binaires. Il a aussi noté que le domaine de composition de deux transformations partielles pouvait être l'ensemble vide, et il a introduit la transformation vide pour tenir compte de ceci. Avec l'adjonction de cette transformation vide, la composition de transformations partielles sur un ensemble devient une opération binaire partout définie. Muni de cette composition, l'ensemble de toutes les transformations partielles d'un ensemble forme un demi-groupe inversif, appelé le demi-groupe inversif symétrique ou monoïde inversif symétrique sur X. Ce demi-groupe est l'archétype d'un demi-groupe inversif, de manière analogue au rôle d'archétype joué par le groupe symétrique. Par exemple, tout comme un groupe peut être plongé dans un groupe symétrique, tout demi-groupe inversif peut être plongé dans un demi-groupe inversif symétrique (voir plus bas).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.