Foundations of mathematicsFoundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Principle of bivalenceIn logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is called a two-valued logic or bivalent logic. In formal logic, the principle of bivalence becomes a property that a semantics may or may not possess. It is not the same as the law of excluded middle, however, and a semantics may satisfy that law without being bivalent.
Classical logicClassical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Each logical system in this class shares characteristic properties: Law of excluded middle and double negation elimination Law of noncontradiction, and the principle of explosion Monotonicity of entailment and idempotency of entailment Commutativity of conjunction De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics.
Principle of explosionIn classical logic, intuitionistic logic and similar logical systems, the principle of explosion (ex falso [sequitur] quodlibet, 'from falsehood, anything [follows]'; or ex contradictione [sequitur] quodlibet), or the principle of Pseudo-Scotus (falsely attributed to Duns Scotus), is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred from it; this is known as deductive explosion.
ConceptA Concept is defined as an abstract idea. It is understood to be a fundamental building block underlying principles, thoughts and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, psychology, and philosophy, and these disciplines are interested in the logical and psychological structure of concepts, and how they are put together to form thoughts and sentences.
Truth valueIn logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (true or false). In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null evaluate to false, and strings with content (like "abc"), other numbers, and objects evaluate to true.
Rule of inferenceIn philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.
L. E. J. BrouwerLuitzen Egbertus Jan Brouwer (ˈbraʊ.ər; ˈlœy̯tsə(n) ɛɣˈbɛrtəs jɑn ˈbrʌu̯ər; 27 February 1881 – 2 December 1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher who worked in topology, set theory, measure theory and complex analysis. Regarded as one of the greatest mathematicians of the 20th century, he is known as the founder of modern topology, particularly for establishing his fixed-point theorem and the topological invariance of dimension.
Arend HeytingNOTOC Arend Heyting (ˈɦɛi̯tɪŋ; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician. Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a footing where it could become part of mathematical logic. Heyting gave the first formal development of intuitionistic logic in order to codify Brouwer's way of doing mathematics.
DialetheismDialetheism (from Greek δι- 'twice' and ἀλήθεια 'truth') is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", dialetheia, or nondualisms. Dialetheism is not a system of formal logic; instead, it is a thesis about truth that influences the construction of a formal logic, often based on pre-existing systems.