**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Topological data analysis

Summary

In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.
The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry.
TDA is premised on the idea that the shape of data sets contains relevant information. Real high-dimensional data is typically sparse, and tends to have relevant low dimensional features. One task of TDA is to provide a precise characterization of this fact. For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations forms a closed circle in state space. TDA provides tools to detect and quantify such recurrent motion.
Many algorithms for data analysis, including those used in TDA, require setting various parameters. Without prior domain knowledge, the correct collection of parameters for a data set is difficult to choose. The main insight of persistent homology is to use the information obtained from all parameter values by encoding this huge amount of information into an understandable and easy-to-represent form. With TDA, there is a mathematical interpretation when the information is a homology group.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (8)

Related people (4)

Related concepts (6)

Related courses (7)

Related lectures (29)

Simplicial homology

In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).

Topological data analysis

In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.

Persistent homology

See homology for an introduction to the notation. Persistent homology is a method for computing topological features of a space at different spatial resolutions. More persistent features are detected over a wide range of spatial scales and are deemed more likely to represent true features of the underlying space rather than artifacts of sampling, noise, or particular choice of parameters. To find the persistent homology of a space, the space must first be represented as a simplicial complex.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-110(a): Advanced linear algebra I

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

MATH-645: Young Topologists Meeting Mini-Courses

We expect these mini-courses to equip junior researchers with new tools, techniques, and perspectives for attacking a broad range of questions in their own areas of research while also inspiring stude

Complex Numbers: Definitions and Properties

Covers the definitions and properties of complex numbers, including the field of complex numbers, the conjugate, the real and imaginary parts, algebraic form, modulus, and argument.

Topology in Complex Networks: Insights from Topological Data Analysis

Explores the role of higher-order topological properties in complex networks using topological data analysis for structural break and price anomaly detection.

Complex Numbers: Introduction and Properties

Covers the introduction to complex numbers and their properties, including historical background and norm calculation.

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree

The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of compl

Kathryn Hess Bellwald, Lida Kanari, Martina Scolamiero

Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification