In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.
The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry.
TDA is premised on the idea that the shape of data sets contains relevant information. Real high-dimensional data is typically sparse, and tends to have relevant low dimensional features. One task of TDA is to provide a precise characterization of this fact. For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations forms a closed circle in state space. TDA provides tools to detect and quantify such recurrent motion.
Many algorithms for data analysis, including those used in TDA, require setting various parameters. Without prior domain knowledge, the correct collection of parameters for a data set is difficult to choose. The main insight of persistent homology is to use the information obtained from all parameter values by encoding this huge amount of information into an understandable and easy-to-represent form. With TDA, there is a mathematical interpretation when the information is a homology group.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre les définitions et les propriétés des nombres complexes, y compris le champ des nombres complexes, le conjugué, les parties réelles et imaginaires, la forme algébrique, le module et l'argument.
This course teaches basic mathematical techniques that can be applied on biological and neuroscience challenges. During the course we will focus on solving similarity tasks with stochastic systems, ra
The focus of this reading group is to delve into the concept of the "Magnitude of Metric Spaces". This approach offers an alternative approach to persistent homology to describe a metric space across
In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).
See homology for an introduction to the notation. Persistent homology is a method for computing topological features of a space at different spatial resolutions. More persistent features are detected over a wide range of spatial scales and are deemed more likely to represent true features of the underlying space rather than artifacts of sampling, noise, or particular choice of parameters. To find the persistent homology of a space, the space must first be represented as a simplicial complex.
A persistence module is a mathematical structure in persistent homology and topological data analysis that formally captures the persistence of topological features of an object across a range of scale parameters. A persistence module often consists of a collection of homology groups (or vector spaces if using field coefficients) corresponding to a filtration of topological spaces, and a collection of linear maps induced by the inclusions of the filtration.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...