Résumé
In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools. The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry. TDA is premised on the idea that the shape of data sets contains relevant information. Real high-dimensional data is typically sparse, and tends to have relevant low dimensional features. One task of TDA is to provide a precise characterization of this fact. For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations forms a closed circle in state space. TDA provides tools to detect and quantify such recurrent motion. Many algorithms for data analysis, including those used in TDA, require setting various parameters. Without prior domain knowledge, the correct collection of parameters for a data set is difficult to choose. The main insight of persistent homology is to use the information obtained from all parameter values by encoding this huge amount of information into an understandable and easy-to-represent form. With TDA, there is a mathematical interpretation when the information is a homology group.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.