In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
The commutator of two elements, g and h, of a group G, is the element
[g, h] = g−1h−1gh.
This element is equal to the group's identity if and only if g and h commute (from the definition gh = hg [g, h] , being [g, h] equal to the identity if and only if gh = hg).
The set of all commutators of a group is not in general closed under the group operation, but the subgroup of G generated by all commutators is closed and is called the derived group or the commutator subgroup of G. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group.
The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as
[g, h] = ghg−1h−1.
Commutator identities are an important tool in group theory. The expression ax denotes the conjugate of a by x, defined as x−1ax.
and
and
and
Identity (5) is also known as the Hall–Witt identity, after Philip Hall and Ernst Witt. It is a group-theoretic analogue of the Jacobi identity for the ring-theoretic commutator (see next section).
N.B., the above definition of the conjugate of a by x is used by some group theorists. Many other group theorists define the conjugate of a by x as xax−1. This is often written . Similar identities hold for these conventions.
Many identities are used that are true modulo certain subgroups. These can be particularly useful in the study of solvable groups and nilpotent groups. For instance, in any group, second powers behave well:
If the derived subgroup is central, then
Rings often do not support division. Thus, the commutator of two elements a and b of a ring (or any associative algebra) is defined differently by
The commutator is zero if and only if a and b commute. In linear algebra, if two endomorphisms of a space are represented by commuting matrices in terms of one basis, then they are so represented in terms of every basis.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
In mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.
In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Introduces key quantum physics concepts such as commutators, observables, and the Schrödinger equation, emphasizing the importance of diagonalization and energy eigenvalues.
Introduces quantum physics postulates, measurement principles, and operator transformations between bases.
This paper extends the quotient method proposed in [1] and applies it to stabilize a “ball-on-a-wheel” system. The quotient method requires a diffeomorphism to obtain the normal form of the input vector field and uses canonical pro- jection to obtain the q ...
We prove trace identities for commutators of operators, which are used to derive sum rules and sharp universal bounds for the eigenvalues of periodic Schrodinger operators and Schrodinger operators on immersed manifolds. In particular, we prove bounds on t ...
We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880- ...