In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. For any interval , or , in the set of real numbers, let denote its length. For any subset , the Lebesgue outer measure is defined as an infimum The above definition can be generalised to higher dimensions as follows. For any rectangular cuboid which is a product of open intervals, let denote its volume. For any subset , Some sets satisfy the Carathéodory criterion, which requires that for every , The set of all such forms a σ-algebra. For any such , its Lebesgue measure is defined to be its Lebesgue outer measure: . A set that does not satisfy the Carathéodory criterion is not Lebesgue-measurable. ZFC proves that non-measurable sets do exist; an example is the Vitali sets. The first part of the definition states that the subset of the real numbers is reduced to its outer measure by coverage by sets of open intervals. Each of these sets of intervals covers in a sense, since the union of these intervals contains . The total length of any covering interval set may overestimate the measure of because is a subset of the union of the intervals, and so the intervals may include points which are not in . The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
MATH-303: Measures and integration
This course provides an introduction to the theory of measures and integration on abstract measure spaces.
Show more
Related lectures (132)
Probability Theory: Lecture 2
Explores toy models, sigma-algebras, T-valued random variables, measures, and independence in probability theory.
Theoreus Chain Role: Lipschitz Sit
Covers the Theoreus Chain Role for Lipschitz functions and its practical applications.
Analysis: Measure and Integration
Introduces the course on measure and integration, focusing on developing a new theory to overcome the limitations of the Riemann integral.
Show more
Related publications (83)

Extensions of Peer Prediction Incentive Mechanisms

Adam Julian Richardson

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
EPFL2024

Multiplicative chaos of the Brownian loop soup

Antoine Pierre François Jego, Titus Lupu

We construct a measure on the thick points of a Brownian loop soup in a bounded domain DDD of the plane with given intensity theta>0θ>0\theta >0, which is formally obtained by exponentiating the square root of its occupation field. The measure is construct ...
WILEY2023

Impact of Redundancy on Resilience in Distributed Optimization and Learning

Nirupam Gupta, Shuo Liu

This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
New York2023
Show more
Related units (1)
Related concepts (30)
Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge.
Hausdorff dimension
In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension.
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.