Concept

Mesure de Lebesgue

Résumé
La mesure de Lebesgue est une mesure qui étend le concept intuitif de volume à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue. Définitions Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice. Celle-ci, grosso modo, caractérise la mesure de Lebesgue comme la « meilleure » mesure donnant les valeurs auxquelles on s'attend sur les solides usuels — la considération des parallélépipèdes rectangles suffisant à conclure, et même les seuls parallélépipèdes aux côtés parallèles aux axes. Dans le théorème d'existence et d'unicité donné ci-dessous, l'unicité est
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Aucun résultat

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement