Concept

# Lorentz transformation

Summary
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant v, representing a velocity confined to the x-direction, is expressed as \begin{align} t' &= \gamma \left( t - \frac{vx}{c^2} \right) \ x' &= \gamma \left( x - v t \right)\ y' &= y \ z' &= z \end{align} where (t, x, y, z) and (t′, x′, y′, z′) are the coordinates of an event in two frames with the origins coinciding at t=t′=0, where the primed frame is seen from the unprimed frame as moving with speed v along the x-axis, where c is the speed of light, and
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units