Modified atmosphere packaging (MAP) is the practice of modifying the composition of the internal atmosphere of a package (commonly food packages, drugs, etc.) in order to improve the shelf life. The need for this technology for food arises from the short shelf life of food products such as meat, fish, poultry, and dairy in the presence of oxygen. In food, oxygen is readily available for lipid oxidation reactions. Oxygen also helps maintain high respiration rates of fresh produce, which contribute to shortened shelf life. From a microbiological aspect, oxygen encourages the growth of aerobic spoilage microorganisms. Therefore, the reduction of oxygen and its replacement with other gases can reduce or delay oxidation reactions and microbiological spoilage. Oxygen scavengers may also be used to reduce browning due to lipid oxidation by halting the auto-oxidative chemical process. Besides, MAP changes the gaseous atmosphere by incorporating different compositions of gases.
The modification process generally lowers the amount of oxygen (O2) in the headspace of the package. Oxygen can be replaced with nitrogen (N2), a comparatively inert gas, or carbon dioxide (CO2).
A stable atmosphere of gases inside the packaging can be achieved using active techniques, such as gas flushing and compensated vacuum, or passively by designing “breathable” films.
The first recorded beneficial effects of using modified atmosphere date back to 1821. Jacques Étienne Bérard, a professor at the School of Pharmacy in Montpellier, France, reported delayed ripening of fruit and increased shelf life in low-oxygen storage conditions. Controlled atmosphere storage (CAS) was used from the 1930s when ships transporting fresh apples and pears had high levels of CO2 in their holding rooms in order to increase the shelf life of the product. In the 1970s MA packages reached the stores when bacon and fish were sold in retail packs in Mexico. Since then development has been continuous and interest in MAP has grown due to consumer demand.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In depth analysis of the operation principles and technology of advanced micro- and nanosystems. Familiarisation to their implementation into products and their applications.
Oxygen scavengers or oxygen absorbers are added to enclosed packaging to help remove or decrease the level of oxygen in the package. They are used to help maintain product safety and extend shelf life. There are many types of oxygen absorbers available to cover a wide array of applications. The components of an oxygen absorber vary according to intended use, the water activity of the product being preserved, and other factors. Often the oxygen absorber or scavenger is enclosed in a porous sachet or packet but it can also be part of packaging films and structures.
Package testing or packaging testing involves the measurement of a characteristic or property involved with packaging. This includes packaging materials, packaging components, primary packages, shipping containers, and unit loads, as well as the associated processes. Testing measures the effects and interactions of the levels of packaging, the package contents, external forces, and end-use. It can involve controlled laboratory experiments, subjective evaluations by people, or field testing.
Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a coordinated system of preparing goods for transport, warehousing, logistics, sale, and end use. Packaging contains, protects, preserves, transports, informs, and sells. In many countries it is fully integrated into government, business, institutional, industrial, and personal use.
Our planet has been challenged for years by our reckless use of fossil fuels, which has led to the ongoing climate change and energy crisis. The transition to the use of renewable alternative sources has now became urgent and inevitable. The valorization o ...
EPFL2023
Electrospinning was used to develop zein fibers containing phycocyanin and aqueous-ethanolic extract of Spirulina (AEES) for elucidating the potent packaging properties of phycocyanin and AEES on walnut samples. Morphological results revealed that using th ...
This paper proposes high-order accurate well-balanced (WB) energy stable (ES) adaptive moving mesh finite difference schemes for the shallow water equations (SWEs) with non flat bottom topography. To enable the construction of the ES schemes on moving mesh ...