Analytic functionIn mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain.
DerivativeIn mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Analytic continuationIn complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value).
Meromorphic functionIn the mathematical field of complex analysis, a meromorphic function on an open subset D of the complex plane is a function that is holomorphic on all of D except for a set of isolated points, which are poles of the function. The term comes from the Greek meros (μέρος), meaning "part". Every meromorphic function on D can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on D: any pole must coincide with a zero of the denominator.
Graph of a functionIn mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in two-dimensional space and thus form a subset of this plane. In the case of functions of two variables, that is functions whose domain consists of pairs the graph usually refers to the set of ordered triples where instead of the pairs as in the definition above. This set is a subset of three-dimensional space; for a continuous real-valued function of two real variables, it is a surface.
Exponential functionThe exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers.
ExponentiationIn mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the (power of) n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: The exponent is usually shown as a superscript to the right of the base.
Ordered pairIn mathematics, an ordered pair (a, b) is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (a, b) is different from the ordered pair (b, a) unless a = b. (In contrast, the unordered pair {a, b} equals the unordered pair {b, a}.) Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
BijectionIn mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y.
Unary operationIn mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function f : A → A, where A is a set. The function f is a unary operation on A. Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!), functional notation (e.g. sin x or sin(x)), and superscripts (e.g. transpose A^T).