Covering spaceA covering of a topological space is a continuous map with special properties. Let be a topological space. A covering of is a continuous map such that there exists a discrete space and for every an open neighborhood , such that and is a homeomorphism for every . Often, the notion of a covering is used for the covering space as well as for the map . The open sets are called sheets, which are uniquely determined up to a homeomorphism if is connected. For each the discrete subset is called the fiber of .
Spin groupIn mathematics the spin group Spin(n) is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2) The group multiplication law on the double cover is given by lifting the multiplication on . As a Lie group, Spin(n) therefore shares its dimension, n(n − 1)/2, and its Lie algebra with the special orthogonal group. For n > 2, Spin(n) is simply connected and so coincides with the universal cover of SO(n).
Rotation matrixIn linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R: If x and y are the endpoint coordinates of a vector, where x is cosine and y is sine, then the above equations become the trigonometric summation angle formulae.
Rotations in 4-dimensional Euclidean spaceIn mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness, rotation angles are assumed to be in the segment except where mentioned or clearly implied by the context otherwise. A "fixed plane" is a plane for which every vector in the plane is unchanged after the rotation.
Gimbal lockGimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space. The term gimbal-lock can be misleading in the sense that none of the individual gimbals are actually restrained. All three gimbals can still rotate freely about their respective axes of suspension.
Dual quaternionIn mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.
Euler's rotation theoremIn geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group. The theorem is named after Leonhard Euler, who proved it in 1775 by means of spherical geometry.
Applications of dual quaternions to 2D geometryIn this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers. Their primary application is in representing rigid body motions in 2D space. Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative.
Hyperbolic quaternionIn abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form where the squares of i, j, and k are +1 and distinct elements of {i, j, k} multiply with the anti-commutative property. The four-dimensional algebra of hyperbolic quaternions incorporates some of the features of the older and larger algebra of biquaternions. They both contain subalgebras isomorphic to the split-complex number plane.
Screw theoryScrew theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms (rigid body mechanics). Screw theory provides a mathematical formulation for the geometry of lines which is central to rigid body dynamics, where lines form the screw axes of spatial movement and the lines of action of forces.